Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Luminescence ; 39(5): e4759, 2024 May.
Article in English | MEDLINE | ID: mdl-38693721

ABSTRACT

Colloidal semiconductor quantum dots have many potential optical applications, including quantum dot light-emitting diodes, single-photon sources, or biological luminescent markers. The optical properties of colloidal quantum dots can be affected by their dielectric environment. This study investigated the photoluminescence (PL) decay of thick-shell gradient-alloyed colloidal semiconductor quantum dots as a function of solvent refractive index. These measurements were conducted in a wide range of delay times to account for both the initial spontaneous decay of excitons and the delayed emission of excitons that has the form of a power law. It is shown that whereas the initial spontaneous PL decay is very sensitive to the refractive index of the solvent, the power-law delayed emission of excitons is not. Our results seem to exclude the possibility of carrier self-trapping in the considered solvents and suggest the existence of trap states inside the quantum dots. Finally, our data show that the average exciton lifetime significantly decreases as a function of the solvent refractive index. The change in exciton lifetime is qualitatively modeled and discussed.


Subject(s)
Colloids , Luminescence , Quantum Dots , Solvents , Quantum Dots/chemistry , Solvents/chemistry , Colloids/chemistry , Refractometry , Luminescent Measurements , Semiconductors , Time Factors
2.
Polymers (Basel) ; 13(10)2021 May 13.
Article in English | MEDLINE | ID: mdl-34068290

ABSTRACT

The interface between the semiconductor and the dielectric layer plays a crucial role in organic field-effect transistors (OFETs) because it is at the interface that charge carriers are accumulated and transported. In this study, four zwitterionic benzoquinonemonoimine dyes featuring alkyl and aryl N-substituents were used to cover the dielectric layers in OFET structures. The best interlayer material, containing aliphatic side groups, increased charge carrier mobility in the measured systems. This improvement can be explained by the reduction in the number of the charge carrier trapping sites at the dielectric active layer interface from 1014 eV-1 cm-2 to 2 × 1013 eV-1 cm-2. The density of the traps was one order of magnitude lower compared to the unmodified transistors. This resulted in an increase in charge carrier mobility in the tested poly [2,5-(2-octyldodecyl)-3,6-diketopyrrolopyrrole-alt-5,5-(2,5-di(thien-2-yl)thieno [3,2-b]thiophene)] (DPPDTT)-based transistors to 5.4 × 10-1 cm2 V-1 s-1.

3.
Article in English | MEDLINE | ID: mdl-27104675

ABSTRACT

Liquid-crystalline perylene-3,4,9,10-tetra-(n-pentylester) zone-casted on hydrophilic glass substrates forms characteristic belt-like structures which are observed under optical microscope and atomic force microscope. Polarised Raman scattering spectra reveal the presence of anisotropic alignment of the molecules inside the obtained structures. Moreover, the absorption and fluorescence spectra confirm molecular aggregation in the belt-like structures. The research shows, that the belt-like structures are created by columns of molecules with the edge-on alignment on the glass substrate. Such organisation of the molecules is confirmed by spectroscopic methods. These structures can be interesting from the point of view of organic electronics.

SELECTION OF CITATIONS
SEARCH DETAIL
...