Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
Pharmacol Res ; 114: 235-250, 2016 12.
Article in English | MEDLINE | ID: mdl-27825819

ABSTRACT

Acetylsalicylic acid (ASA) is mainly recognized as painkiller or anti-inflammatory drug. However, ASA causes serious side effects towards gastrointestinal (GI) tract which limits its usefulness. Carbon monoxide (CO) and hydrogen sulfide (H2S) have been described to act as important endogenous messengers and mediators of gastroprotection but whether they can interact in gastroprotection against acute ASA-induced gastric damage remains unknown. In this study male Wistar rats were pretreated with 1) vehicle (saline, i.g.), 2) tricarbonyldichlororuthenium (II) dimer (CORM-2, 5mg/kg i.g.), 3) sodium hydrosulfide (NaHS, 5mg/kg i.g.), 4) zinc protoporphyrin (ZnPP, 10mg/kg i.p.), 5) D,L-propargylglycine (PAG, 30mg/kg i.g.), 6) ZnPP combined with NaHS, 7) PAG combined with CORM-2 or 8) 1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one (ODQ, 10mg/kg i.p.) combined with CORM-2 or NaHS and 30min later ASA was administered i.g. in a single dose of 125mg/kg. After 1h, gastric blood flow (GBF) was determined by H2 gas clearance technique and gastric lesions were assessed by planimetry and histology. CO content in gastric mucosa and COHb concentration in blood were determined by gas chromatography and H2S production was assessed in gastric mucosa using methylene blue method. Protein and/or mRNA expression for cystathionine-γ-lyase (CSE), cystathionine-ß-synthase (CBS), 3-mercaptopyruvate sulfurtransferase (3-MST), heme oxygenase (HO)-1, HO-2, hypoxia inducible factor-alpha (HIF)-1α, nuclear factor (erythroid-derived 2)-like 2 (Nrf-2), cyclooxygenase (COX)-1 and COX-2, inducible nitric oxide synthase (iNOS) and interleukin (IL)-1ß were determined by Western blot or real-time PCR, respectively. ASA caused hemorrhagic gastric mucosal damage and significantly decreased GBF, H2S production, CO content, mRNA or protein expression for CSE, 3-MST, HO-2 and increased mRNA and/or protein expression for CBS, HO-1, Nrf-2, HIF-1α, iNOS, IL-1ß, COX-2 in gastric mucosa and COHb concentration in blood. Pretreatment with CORM-2 or NaHS but not with PAG decreased ASA-damage and increased GBF. ZnPP reversed protective and hyperemic effect of NaHS but PAG failed to affect CORM-2-induced gastroprotection. CORM-2 elevated CO content, mRNA or protein expression for HO-1, Nrf-2, and decreased expression of CBS, HIF-1α, COX-2, IL-1ß, iNOS, the H2S production in gastric mucosa and COHb concentration in blood. NaHS raised mRNA or protein expression for CSE, COX-1 and decreased mRNA expression for IL-1ß and COHb level in blood. We conclude that CO is involved in gastroprotection induced by H2S while beneficial protective action of CO released from CORM-2 in gastric mucosa seems to be H2S-independent. In contrast to H2S, CO ameliorates hypoxia, regulates Nrf-2 expression but similarly to H2S acts on sGC-dependent manner to restore gastric microcirculation and exhibit anti-inflammatory activity in gastric mucosa compromised by ASA.


Subject(s)
Anti-Inflammatory Agents, Non-Steroidal/adverse effects , Aspirin/adverse effects , Carbon Monoxide/metabolism , Hydrogen Sulfide/metabolism , Stomach/drug effects , Stomach/pathology , Animals , Cyclooxygenase 1/genetics , Cyclooxygenase 1/metabolism , Cyclooxygenase 2/genetics , Cyclooxygenase 2/metabolism , Gastric Mucosa/drug effects , Gastric Mucosa/metabolism , Gastric Mucosa/pathology , Gene Expression Regulation/drug effects , Heme Oxygenase-1/genetics , Heme Oxygenase-1/metabolism , Male , Protective Agents/metabolism , Rats, Wistar
2.
Int J Mol Sci ; 17(4): 442, 2016 Mar 24.
Article in English | MEDLINE | ID: mdl-27023525

ABSTRACT

Carbon monoxide (CO) produced by heme oxygenase (HO)-1 and HO-2 or released from the CO-donor, tricarbonyldichlororuthenium (II) dimer (CORM-2) causes vasodilation, with unknown efficacy against stress-induced gastric lesions. We studied whether pretreatment with CORM-2 (0.1-10 mg/kg oral gavage (i.g.)), RuCl3 (1 mg/kg i.g.), zinc protoporphyrin IX (ZnPP) (10 mg/kg intraperitoneally (i.p.)), hemin (1-10 mg/kg i.g.) and CORM-2 (1 mg/kg i.g.) combined with N(G)-nitro-l-arginine (l-NNA, 20 mg/kg i.p.), 1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one (ODQ, 10 mg/kg i.p.), indomethacin (5 mg/kg i.p.), SC-560 (5 mg/kg i.g.), and celecoxib (10 mg/kg i.g.) affects gastric lesions following 3.5 h of water immersion and restraint stress (WRS). Gastric blood flow (GBF), the number of gastric lesions and gastric CO and nitric oxide (NO) contents, blood carboxyhemoglobin (COHb) level and the gastric expression of HO-1, HO-2, hypoxia inducible factor 1α (HIF-1α), tumor necrosis factor α (TNF-α), cyclooxygenase (COX)-2 and inducible NO synthase (iNOS) were determined. CORM-2 (1 mg/kg i.g.) and hemin (10 mg/kg i.g.) significantly decreased WRS lesions while increasing GBF, however, RuCl3 was ineffective. The impact of CORM-2 was reversed by ZnPP, ODQ, indomethacin, SC-560 and celecoxib, but not by l-NNA. CORM-2 decreased NO and increased HO-1 expression and CO and COHb content, downregulated HIF-1α, as well as WRS-elevated COX-2 and iNOS mRNAs. Gastroprotection by CORM-2 and HO depends upon CO's hyperemic and anti-inflammatory properties, but is independent of NO.


Subject(s)
Carbon Monoxide/metabolism , Gastric Mucosa/metabolism , Heme Oxygenase (Decyclizing)/metabolism , Organometallic Compounds/pharmacology , Stress, Physiological , Animals , Carbon Monoxide/blood , Celecoxib/pharmacology , Cyclooxygenase 2/genetics , Cyclooxygenase 2/metabolism , Gastric Mucosa/drug effects , Heme Oxygenase (Decyclizing)/antagonists & inhibitors , Heme Oxygenase (Decyclizing)/genetics , Hemin/pharmacology , Hypoxia-Inducible Factor 1, alpha Subunit/genetics , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Indomethacin/pharmacology , Male , Nitric Oxide/metabolism , Nitric Oxide Synthase Type II/genetics , Nitric Oxide Synthase Type II/metabolism , Nitroarginine/pharmacology , Organometallic Compounds/chemistry , Protoporphyrins/pharmacology , Pyrazoles/pharmacology , RNA, Messenger/metabolism , Rats , Rats, Wistar
3.
PLoS One ; 10(10): e0140493, 2015.
Article in English | MEDLINE | ID: mdl-26460608

ABSTRACT

The physiological gaseous molecule, carbon monoxide (CO) becomes a subject of extensive investigation due to its vasoactive activity throughout the body but its role in gastroprotection has been little investigated. We determined the mechanism of CO released from its donor tricarbonyldichlororuthenium (II) dimer (CORM-2) in protection of gastric mucosa against 75% ethanol-induced injury. Rats were pretreated with CORM-2 30 min prior to 75% ethanol with or without 1) non-selective (indomethacin) or selective cyclooxygenase (COX)-1 (SC-560) and COX-2 (celecoxib) inhibitors, 2) nitric oxide (NO) synthase inhibitor L-NNA, 3) ODQ, a soluble guanylyl cyclase (sGC) inhibitor, hemin, a heme oxygenase (HO)-1 inductor or zinc protoporphyrin IX (ZnPPIX), an inhibitor of HO-1 activity. The CO content in gastric mucosa and carboxyhemoglobin (COHb) level in blood was analyzed by gas chromatography. The gastric mucosal mRNA expression for HO-1, COX-1, COX-2, iNOS, IL-4, IL-1ß was analyzed by real-time PCR while HO-1, HO-2 and Nrf2 protein expression was determined by Western Blot. Pretreatment with CORM-2 (0.5-10 mg/kg) dose-dependently attenuated ethanol-induced lesions and raised gastric blood flow (GBF) but large dose of 100 mg/kg was ineffective. CORM-2 (5 mg/kg and 50 mg/kg i.g.) significantly increased gastric mucosal CO content and whole blood COHb level. CORM-2-induced protection was reversed by indomethacin, SC-560 and significantly attenuated by celecoxib, ODQ and L-NNA. Hemin significantly reduced ethanol damage and raised GBF while ZnPPIX which exacerbated ethanol-induced injury inhibited CORM-2- and hemin-induced gastroprotection and the accompanying rise in GBF. CORM-2 significantly increased gastric mucosal HO-1 mRNA expression and decreased mRNA expression for iNOS, IL-1ß, COX-1 and COX-2 but failed to affect HO-1 and Nrf2 protein expression decreased by ethanol. We conclude that CORM-2 released CO exerts gastroprotection against ethanol-induced gastric lesions involving an increase in gastric microcirculation mediated by sGC/cGMP, prostaglandins derived from COX-1, NO-NOS system and its anti-inflammatory properties.


Subject(s)
Carbon Monoxide/metabolism , Organometallic Compounds/pharmacology , Protective Agents/pharmacology , Stomach/pathology , Animals , Carboxyhemoglobin/metabolism , Chromatography, Gas , Cyclooxygenase 2/metabolism , Ethanol , Gastric Mucosa/drug effects , Gastric Mucosa/metabolism , Gastric Mucosa/pathology , Heme Oxygenase (Decyclizing)/metabolism , Heme Oxygenase-1/genetics , Heme Oxygenase-1/metabolism , Interleukin-1beta/genetics , Interleukin-1beta/metabolism , Male , NF-E2-Related Factor 2/metabolism , Nitric Oxide Synthase Type II/genetics , Nitric Oxide Synthase Type II/metabolism , Protoporphyrins/pharmacology , RNA, Messenger/genetics , RNA, Messenger/metabolism , Rats, Wistar , Regional Blood Flow , Stomach/blood supply , Stomach/drug effects , Stomach/enzymology
SELECTION OF CITATIONS
SEARCH DETAIL
...