Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Front Microbiol ; 13: 871152, 2022.
Article in English | MEDLINE | ID: mdl-35633701

ABSTRACT

The alternative sigma factor SigL (Sigma-54) facilitates bacterial adaptation to the extracellular environment by modulating the expression of defined gene subsets. A homolog of the gene encoding SigL is conserved in the diarrheagenic pathogen Clostridioides difficile. To explore the contribution of SigL to C. difficile biology, we generated sigL-disruption mutants (sigL::erm) in strains belonging to two phylogenetically distinct lineages-the human-relevant Ribotype 027 (strain BI-1) and the veterinary-relevant Ribotype 078 (strain CDC1). Comparative proteomics analyses of mutants and isogenic parental strains revealed lineage-specific SigL regulons. Concomitantly, loss of SigL resulted in pleiotropic and distinct phenotypic alterations in the two strains. Sporulation kinetics, biofilm formation, and cell surface-associated phenotypes were altered in CDC1 sigL::erm relative to the isogenic parent strain but remained unchanged in BI-1 sigL::erm. In contrast, secreted toxin levels were significantly elevated only in the BI-1 sigL::erm mutant relative to its isogenic parent. We also engineered SigL overexpressing strains and observed enhanced biofilm formation in the CDC1 background, and reduced spore titers as well as dampened sporulation kinetics in both strains. Thus, we contend that SigL is a key, pleiotropic regulator that dynamically influences C. difficile's virulence factor landscape, and thereby, its interactions with host tissues and co-resident microbes.

2.
J Neurosci Res ; 99(1): 284-293, 2021 01.
Article in English | MEDLINE | ID: mdl-32112450

ABSTRACT

In offspring, an adequate maternal diet is important for neurodevelopment. One mechanism by which maternal diet impacts neurodevelopment is through its dynamic role in the development of the gut microbiota. Communication between the gut, and its associated microbiota, and the brain is facilitated by the vagus nerve, in addition to other routes. Currently, the mechanisms through which maternal diet impacts offspring microbiota development are not well-defined. Therefore, this review aims to investigate the relationship between maternal diet during pregnancy and offspring microbiota development and its impact on neurodevelopment. Both human and animal model studies were reviewed to understand the impact of maternal diet on offspring microbiota development and potential consequences on neurodevelopment. In the period after birth, as reported in both human and model system studies, maternal diet impacts offspring bacterial colonization (e.g., decreased presence of Lactobacillus reuteri as a result of a high-fat maternal diet). It remains unknown whether these changes persist into adulthood and whether they impact vulnerability to disease. Therefore, further long-term studies are required in both human and model systems to study these changes. Our survey of the literature indicates that maternal diet influences early postnatal microbiota development, which in turn, may serve as a mechanism through which maternal diet impacts neurodevelopment.


Subject(s)
Gastrointestinal Microbiome , Prenatal Nutritional Physiological Phenomena , Animals , Female , Humans , Pregnancy , Prenatal Exposure Delayed Effects
3.
Front Microbiol ; 9: 2080, 2018.
Article in English | MEDLINE | ID: mdl-30233548

ABSTRACT

Morbidity and mortality attributed to Clostridium difficile infection (CDI) have increased over the past 20 years. Currently, antibiotics are the only US FDA-approved treatment for primary C. difficile infection, and these are, ironically, associated with disease relapse and the threat of burgeoning drug resistance. We previously showed that non-toxin virulence factors play key roles in CDI, and that colonization factors are critical for disease. Specifically, a C. difficile adhesin, Surface Layer Protein A (SlpA) is a major contributor to host cell attachment. In this work, we engineered Syn-LAB 2.0 and Syn-LAB 2.1, two synthetic biologic agents derived from lactic acid bacteria, to stably and constitutively express a host-cell binding fragment of the C. difficile adhesin SlpA on their cell-surface. Both agents harbor conditional suicide plasmids expressing a codon-optimized chimera of the lactic acid bacterium's cell-wall anchoring surface-protein domain, fused to the conserved, highly adherent, host-cell-binding domain of C. difficile SlpA. Both agents also incorporate engineered biocontrol, obviating the need for any antibiotic selection. Syn-LAB 2.0 and Syn-LAB 2.1 possess positive biophysical and in vivo properties compared with their parental antecedents in that they robustly and constitutively display the SlpA chimera on their cell surface, potentiate human intestinal epithelial barrier function in vitro, are safe, tolerable and palatable to Golden Syrian hamsters and neonatal piglets at high daily doses, and are detectable in animal feces within 24 h of dosing, confirming robust colonization. In combination, the engineered strains also delay (in fixed doses) or prevent (when continuously administered) death of infected hamsters upon challenge with high doses of virulent C. difficile. Finally, fixed-dose Syn-LAB ameliorates diarrhea in a non-lethal model of neonatal piglet enteritis. Taken together, our findings suggest that the two synthetic biologics may be effectively employed as non-antibiotic interventions for CDI.

SELECTION OF CITATIONS
SEARCH DETAIL
...