Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
Sens Diagn ; 3(1): 104-111, 2024 Jan 18.
Article in English | MEDLINE | ID: mdl-38249540

ABSTRACT

Concentration-therapeutic efficacy relationships have been observed for several therapeutic monoclonal antibodies (TmAb), where low circulating levels can result in ineffective treatment and high concentrations can cause adverse reactions. Rapid therapeutic drug monitoring (TDM) of TmAb drugs would provide the opportunity to adjust an individual patient's dosing regimen to improve treatment results. However, TDM for immunotherapies is currently limited to centralised testing methods with long sample-collection to result timeframes. Here, we show four point-of-care (PoC) TmAb biosensors by combining anti-idiotypic Affimer proteins and NanoBiT split luciferase technology at a molecular level to provide a platform for rapid quantification (<10 minutes) for four clinically relevant TmAb (rituximab, adalimumab, ipilimumab and trastuzumab). The rituximab sensor performed best with 4 pM limit of detection (LoD) and a quantifiable range between 8 pM-2 nM with neglectable matrix effects in serum up to 1%. After dilution of serum samples, the resulting quantifiable range for all four sensors falls within the clinically relevant range and compares favourably with the sensitivity and/or time-to-result of current ELISA standards. Further development of these sensors into a PoC test may improve treatment outcome and quality of life for patients receiving immunotherapy.

2.
Biosens Bioelectron ; 237: 115488, 2023 Oct 01.
Article in English | MEDLINE | ID: mdl-37419072

ABSTRACT

Therapeutic monoclonal antibodies (TmAb) have emerged as effective treatments for a number of cancers and autoimmune diseases. However, large interpatient disparities in the pharmacokinetics of TmAb treatment requires close therapeutic drug monitoring (TDM) to optimise dosage for individual patients. Here we demonstrate an approach for achieving rapid, sensitive quantification of two monoclonal antibody therapies using a previously described enzyme switch sensor platform. The enzyme switch sensor consists of a ß-lactamase - ß-lactamase inhibitor protein (BLA-BLIP) complex with two anti-idiotype binding proteins (Affimer proteins) as recognition elements. The BLA-BLIP sensor was engineered to detect two TmAbs (trastuzumab and ipilimumab) by developing constructs incorporating novel synthetic binding reagents to each of these mAbs. Trastuzumab and ipilimumab were successfully monitored with sub nM sensitivity in up to 1% serum, thus covering the relevant therapeutic range. Despite the modular design, the BLA-BLIP sensor was unsuccessful in detecting two further TmAbs (rituximab and adalimumab), an explanation for which was explored. In conclusion, the BLA-BLIP sensors provide a rapid biosensor for TDM of trastuzumab and ipilimumab with the potential to improve therapy. The sensitivity of this platform alongside its rapid action would be suitable for bedside monitoring in a point-of-care (PoC) setting.


Subject(s)
Biosensing Techniques , Drug Monitoring , Humans , Ipilimumab , Antibodies, Monoclonal/therapeutic use , Trastuzumab/therapeutic use , Immunotherapy
3.
Anal Chem ; 94(23): 8156-8163, 2022 06 14.
Article in English | MEDLINE | ID: mdl-35634999

ABSTRACT

C. difficile infection (CDI) is a leading healthcare-associated infection with a high morbidity and mortality and is a financial burden. No current standalone point-of-care test (POCT) is sufficient for the identification of true CDI over a disease-free carriage of C. difficile, so one is urgently required to ensure timely, appropriate treatment. Here, two types of binding proteins, Affimers and nanobodies, targeting two C. difficile biomarkers, glutamate dehydrogenase (GDH) and toxin B (TcdB), are combined in NanoBiT (NanoLuc Binary Technology) split-luciferase assays. The assays were optimized and their performance controlling parameters were examined. The 44 fM limit of detection (LoD), 4-5 log range and 1300-fold signal gain of the TcdB assay in buffer is the best observed for a NanoBiT assay to date. In the stool sample matrix, the GDH and TcdB assay sensitivity (LoD = 4.5 and 2 pM, respectively) and time to result (32 min) are similar to a current, commercial lateral flow POCT, but the NanoBit assay has no wash steps, detects clinically relevant TcdB over TcdA, and is quantitative. Development of the assay into a POCT may drive sensitivity further and offer an urgently needed ultrasensitive TcdB test for the rapid diagnosis of true CDI. The NanoBiTBiP (NanoBiT with Binding Proteins) system offers advantages over NanoBiT assays with antibodies as binding elements in terms of ease of production and assay performance. We expect this methodology and approach to be generally applicable to other biomarkers.


Subject(s)
Bacterial Toxins , Clostridioides difficile , Bacterial Proteins , Enterotoxins , Feces , Glutamate Dehydrogenase/metabolism , Luciferases
4.
ACS Sens ; 5(10): 3001-3012, 2020 10 23.
Article in English | MEDLINE | ID: mdl-33052043

ABSTRACT

Biological signaling pathways are underpinned by protein switches that sense and respond to molecular inputs. Inspired by nature, engineered protein switches have been designed to directly transduce analyte binding into a quantitative signal in a simple, wash-free, homogeneous assay format. As such, they offer great potential to underpin point-of-need diagnostics that are needed across broad sectors to improve access, costs, and speed compared to laboratory assays. Despite this, protein switch assays are not yet in routine diagnostic use, and a number of barriers to uptake must be overcome to realize this potential. Here, we review the opportunities and challenges in engineering protein switches for rapid diagnostic tests. We evaluate how their design, comprising a recognition element, reporter, and switching mechanism, relates to performance and identify areas for improvement to guide further optimization. Recent modular switches that enable new analytes to be targeted without redesign are crucial to ensure robust and efficient development processes. The importance of translational steps toward practical implementation, including integration into a user-friendly device and thorough assay validation, is also discussed.


Subject(s)
Biosensing Techniques , Diagnostic Tests, Routine , Protein Engineering , Proteins
5.
Biotechniques ; 67(6): 261-269, 2019 12.
Article in English | MEDLINE | ID: mdl-31823668

ABSTRACT

Therapeutic antibodies are the fastest growing class of drugs in the treatment of cancer, and autoimmune and inflammatory diseases that require the concomitant development of assays to monitor therapeutic antibody levels. Here, we demonstrate that the use of Affimer nonantibody binding proteins provides an advantage over current antibody-based detection systems. For four therapeutic antibodies, we used phage display to isolate highly specific anti-idiotypic Affimer reagents, which selectively bind to the therapeutic antibody idiotype. For each antibody target the calibration curves met US Food and Drug Administration criteria and the dynamic range compared favorably with commercially available reagents. Affimer proteins therefore represent promising anti-idiotypic reagents that are simple to select and manufacture, and that offer the sensitivity, specificity and consistency required for pharmacokinetic assays.


Subject(s)
Antibodies, Monoclonal/pharmacokinetics , Antibody Affinity/drug effects , Biological Therapy/methods , Animals , Humans
6.
ACS Sens ; 4(11): 3014-3022, 2019 11 22.
Article in English | MEDLINE | ID: mdl-31578863

ABSTRACT

Robust technology is required to underpin rapid point-of-care and in-field diagnostics to improve timely decision making across broad sectors. An attractive strategy combines target recognition and signal generating elements into an "active" enzyme-switch that directly transduces target-binding into a signal. However, approaches that are broadly applicable to diverse targets remain elusive. Here, an enzyme-inhibitor switch sensor was developed by insertion of non-immunoglobulin Affimer binding proteins, between TEM1-ß-lactamase and its inhibitor protein, such that target binding disrupts the enzyme-inhibitor complex. Design principles for a successful switch architecture are illustrated by the rapid (min), simple (wash-free), and sensitive (pM) quantification of multimeric target analytes in biological samples (serum, plasma, leaf extracts), across three application areas. A therapeutic antibody (Herceptin), protein biomarker (human C-reactive protein), and plant virus (cow pea mosaic virus) were targeted, demonstrating assays for therapeutic drug monitoring, health diagnostics, and plant pathogen detection, respectively. Batch-to-batch reproducibility, shelf-life stability, and consistency with validated enzyme-linked immunosorbent assay analysis confirm that the principle of an Affimer-enzyme-inhibitor switch provides a platform for point-of-care and in-field diagnostics.


Subject(s)
Biosensing Techniques , Enzyme Inhibitors/chemistry , Enzyme-Linked Immunosorbent Assay , beta-Lactamases/analysis , Enzyme Inhibitors/pharmacology , Humans , beta-Lactamases/metabolism
7.
Sci Rep ; 9(1): 7524, 2019 05 17.
Article in English | MEDLINE | ID: mdl-31101847

ABSTRACT

Plant viruses can cause devastating losses to agriculture and are therefore a major threat to food security. The rapid identification of virally-infected crops allowing containment is essential to limit such threats, but plant viral diseases can be extremely challenging to diagnose. An ideal method for plant virus diagnosis would be a device which can be implemented easily in the field. Such devices require a binding reagent that is specific for the virus of interest. We chose to investigate the use of Affimer reagents, artificial binding proteins and a model plant virus Cowpea Mosaic virus (CPMV) empty virus like particles (eVLPs). CPMV-eVLP mimic the morphology of wild-type (WT) CPMV but lack any infectious genomic material and so do not have biocontainment issues. We have produced and purified an Affimer reagent selected for its ability to bind to CPMV-eVLP and have shown that the selected Affimer also specifically binds to WT CPMV. We have produced a 3.4 Å structure of WT CPMV bound to the Affimer using cryo-electron microscopy. Finally, we have shown that this Affimer is capable of reliably detecting the virus in crude extracts of CPMV-infected leaves and can therefore form the basis for the future development of diagnostic tests.


Subject(s)
Plant Diseases/virology , Plant Viruses/isolation & purification , Antigens, Viral , Comovirus/immunology , Comovirus/ultrastructure , Crop Protection , Crops, Agricultural/virology , Cross Reactions , Cryoelectron Microscopy , Food Supply , Indicators and Reagents , Plant Viruses/pathogenicity , Plant Viruses/ultrastructure , Virion/immunology , Virion/ultrastructure
8.
Chem Commun (Camb) ; 53(69): 9519-9533, 2017 Aug 24.
Article in English | MEDLINE | ID: mdl-28804798

ABSTRACT

Biological electron-exchange reactions are fundamental to life on earth. Redox reactions underpin respiration, photosynthesis, molecular biosynthesis, cell signalling and protein folding. Chemical, biomedical and future energy technology developments are also inspired by these natural electron transfer processes. Further developments in techniques and data analysis are required to gain a deeper understanding of the redox biochemistry processes that power Nature. This review outlines the new insights gained from developing Fourier transformed ac voltammetry as a tool for protein film electrochemistry.

9.
J Am Chem Soc ; 139(31): 10677-10686, 2017 08 09.
Article in English | MEDLINE | ID: mdl-28697596

ABSTRACT

The redox chemistry of the electron entry/exit site in Escherichia coli hydrogenase-1 is shown to play a vital role in tuning biocatalysis. Inspired by nature, we generate a HyaA-R193L variant to disrupt a proposed Arg-His cation-π interaction in the secondary coordination sphere of the outermost, "distal", iron-sulfur cluster. This rewires the enzyme, enhancing the relative rate of H2 production and the thermodynamic efficiency of H2 oxidation catalysis. On the basis of Fourier transformed alternating current voltammetry measurements, we relate these changes in catalysis to a shift in the distal [Fe4S4]2+/1+ redox potential, a previously experimentally inaccessible parameter. Thus, metalloenzyme chemistry is shown to be tuned by the second coordination sphere of an electron transfer site distant from the catalytic center.


Subject(s)
Amino Acids/chemistry , Hydrogenase/chemistry , Catalysis , Electrons , Hydrogen/chemistry , Oxidation-Reduction
10.
Anal Chem ; 89(3): 1565-1573, 2017 02 07.
Article in English | MEDLINE | ID: mdl-28029041

ABSTRACT

Rapid disulfide bond formation and cleavage is an essential mechanism of life. Using large amplitude Fourier transformed alternating current voltammetry (FTacV) we have measured previously uncharacterized disulfide bond redox chemistry in Escherichia coli HypD. This protein is representative of a class of assembly proteins that play an essential role in the biosynthesis of the active site of [NiFe]-hydrogenases, a family of H2-activating enzymes. Compared to conventional electrochemical methods, the advantages of the FTacV technique are the high resolution of the faradaic signal in the higher order harmonics and the fact that a single electrochemical experiment contains all the data needed to estimate the (very fast) electron transfer rates (both rate constants ≥ 4000 s-1) and quantify the energetics of the cysteine disulfide redox-reaction (reversible potentials for both processes approximately -0.21 ± 0.01 V vs SHE at pH 6). Previously, deriving such data depended on an inefficient manual trial-and-error approach to simulation. As a highly advantageous alternative, we describe herein an automated multiparameter data optimization analysis strategy where the simulated and experimental faradaic current data are compared for both the real and imaginary components in each of the 4th to 12th harmonics after quantifying the charging current data using the time-domain response.

11.
Proc Natl Acad Sci U S A ; 112(47): 14506-11, 2015 Nov 24.
Article in English | MEDLINE | ID: mdl-26561582

ABSTRACT

A long-standing contradiction in the field of mononuclear Mo enzyme research is that small-molecule chemistry on active-site mimic compounds predicts ligand participation in the electron transfer reactions, but biochemical measurements only suggest metal-centered catalytic electron transfer. With the simultaneous measurement of substrate turnover and reversible electron transfer that is provided by Fourier-transformed alternating-current voltammetry, we show that Escherichia coli YedY is a mononuclear Mo enzyme that reconciles this conflict. In YedY, addition of three protons and three electrons to the well-characterized "as-isolated" Mo(V) oxidation state is needed to initiate the catalytic reduction of either dimethyl sulfoxide or trimethylamine N-oxide. Based on comparison with earlier studies and our UV-vis redox titration data, we assign the reversible one-proton and one-electron reduction process centered around +174 mV vs. standard hydrogen electrode at pH 7 to a Mo(V)-to-Mo(IV) conversion but ascribe the two-proton and two-electron transition occurring at negative potential to the organic pyranopterin ligand system. We predict that a dihydro-to-tetrahydro transition is needed to generate the catalytically active state of the enzyme. This is a previously unidentified mechanism, suggested by the structural simplicity of YedY, a protein in which Mo is the only metal site.


Subject(s)
Escherichia coli Proteins/chemistry , Oxidoreductases/chemistry , Pterins/chemistry , Catalysis , Catalytic Domain , Electrochemistry , Oxidation-Reduction
12.
J Am Chem Soc ; 135(7): 2694-707, 2013 Feb 20.
Article in English | MEDLINE | ID: mdl-23398301

ABSTRACT

"Hyd-1", produced by Escherichia coli , exemplifies a special class of [NiFe]-hydrogenase that can sustain high catalytic H(2) oxidation activity in the presence of O(2)-an intruder that normally incapacitates the sulfur- and electron-rich active site. The mechanism of "O(2) tolerance" involves a critical role for the Fe-S clusters of the electron relay, which is to ensure the availability-for immediate transfer back to the active site-of all of the electrons required to reduce an attacking O(2) molecule completely to harmless H(2)O. The unique [4Fe-3S] cluster proximal to the active site is crucial because it can rapidly transfer two of the electrons needed. Here we investigate and establish the equally crucial role of the high potential medial [3Fe-4S] cluster, located >20 Å from the active site. A variant, P242C, in which the medial [3Fe-4S] cluster is replaced by a [4Fe-4S] cluster, is unable to sustain steady-state H(2) oxidation activity in 1% O(2). The [3Fe-4S] cluster is essential only for the first stage of complete O(2) reduction, ensuring the supply of all three electrons needed to form the oxidized inactive state "Ni-B" or "Ready" (Ni(III)-OH). Potentiometric titrations show that Ni-B is easily reduced (E(m) ≈ +0.1 V at pH 6.0); this final stage of the O(2)-tolerance mechanism regenerates active enzyme, effectively completing a competitive four-electron oxidase cycle and is fast regardless of alterations at the proximal or medial clusters. As a consequence of all these factors, the enzyme's response to O(2), viewed by its electrocatalytic activity in protein film electrochemistry (PFE) experiments, is merely to exhibit attenuated steady-state H(2) oxidation activity; thus, O(2) behaves like a reversible inhibitor rather than an agent that effectively causes irreversible inactivation. The data consolidate a rich picture of the versatile role of Fe-S clusters in electron relays and suggest that Hyd-1 can function as a proficient hydrogen oxidase.


Subject(s)
Hydrogen/chemistry , Hydrogenase/chemistry , Iron-Sulfur Proteins/chemistry , Oxygen/chemistry , Amino Acid Sequence , Crystallography, X-Ray , Escherichia coli/enzymology , Escherichia coli/genetics , Genetic Variation , Hydrogenase/genetics , Hydrogenase/metabolism , Iron-Sulfur Proteins/metabolism , Models, Biological , Molecular Sequence Data , Oxidation-Reduction , Sequence Alignment
SELECTION OF CITATIONS
SEARCH DETAIL
...