Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 66
Filter
1.
AIDS ; 37(7): 1109-1113, 2023 06 01.
Article in English | MEDLINE | ID: mdl-36928169

ABSTRACT

OBJECTIVE: We sought to evaluate the utility of a point-of-care (POC) urine tenofovir (TFV) assay, developed to objectively assess adherence, to predict HIV drug resistance (HIVDR) in people failing first-line antiretroviral therapy (ART). DESIGN: We retrospectively analyzed TFV levels as a biomarker of adherence in urine specimens collected during a clinical trial that enrolled adults with virologic failure on first-line ART in Uganda and South Africa. METHODS: Urine specimens were analyzed from participants on TFV-containing regimens who had a viral load >1000 copies/ml and paired genotypic resistance test (GRT) results. We assessed recent ART TFV adherence with a qualitative POC lateral flow urine assay with a cut-off value of 1500 ng/ml. We then calculated performance characteristics of the POC urine TFV assay to predict HIVDR, defined as intermediate or high-level resistance to any component of the current ART regimen. RESULTS: Urine specimens with paired plasma GRT results were available from 283 participants. The most common ART regimen during study conduct was emtricitabine, tenofovir disoproxil fumarate, and efavirenz. The overall prevalence of HIVDR was 86% ( n = 243/283). Of those with TFV detected on the POC assay, 91% ( n  = 204/224) had HIVDR, vs. only 66% ( n  = 39/59) among those with no TFV detected ( P- value < 0.001). Positive and negative predictive values of the assay to predict HIVDR were 91% and 34%, respectively. CONCLUSIONS: In populations with a high prevalence of HIVDR, the POC urine TFV assay can provide a low-cost, rapid method to guide requirements for confirmatory resistance testing and inform the need for regimen change.


Subject(s)
Anti-HIV Agents , HIV Infections , HIV-1 , Adult , Humans , Tenofovir/therapeutic use , Tenofovir/urine , HIV Infections/drug therapy , Point-of-Care Systems , Retrospective Studies , Anti-Retroviral Agents/therapeutic use , HIV-1/genetics
2.
Commun Biol ; 5(1): 1317, 2022 12 01.
Article in English | MEDLINE | ID: mdl-36456824

ABSTRACT

Mycobacterium tuberculosis (Mtb) is one of the most successful human pathogens. Several cytokines are known to increase virulence of bacterial pathogens, leading us to investigate whether Interferon-γ (IFN-γ), a central regulator of the immune defense against Mtb, has a direct effect on the bacteria. We found that recombinant and T-cell derived IFN-γ rapidly induced a dose-dependent increase in the oxygen consumption rate (OCR) of Mtb, consistent with increased bacterial respiration. This was not observed in attenuated Bacillus Calmette-Guérin (BCG), and did not occur for other cytokines tested, including TNF-α. IFN-γ binds to the cell surface of intact Mtb, but not BCG. Mass spectrometry identified mycobacterial membrane protein large 10 (MmpL10) as the transmembrane binding partner of IFN-γ, supported by molecular modelling studies. IFN-γ binding and the OCR response was absent in Mtb Δmmpl10 strain and restored by complementation with wildtype mmpl10. RNA-sequencing and RT-PCR of Mtb exposed to IFN-γ revealed a distinct transcriptional profile, including genes involved in virulence. In a 3D granuloma model, IFN-γ promoted Mtb growth, which was lost in the Mtb Δmmpl10 strain and restored by complementation, supporting the involvement of MmpL10 in the response to IFN-γ. Finally, IFN-γ addition resulted in sterilization of Mtb cultures treated with isoniazid, indicating clearance of phenotypically resistant bacteria that persist in the presence of drug alone. Together our data are the first description of a mechanism allowing Mtb to respond to host immune activation that may be important in the immunopathogenesis of TB and have use in novel eradication strategies.


Subject(s)
Mycobacterium bovis , Mycobacterium tuberculosis , Humans , Mycobacterium tuberculosis/genetics , Interferon-gamma , Membrane Proteins/genetics , Cytokines
3.
mBio ; 13(3): e0026922, 2022 06 28.
Article in English | MEDLINE | ID: mdl-35446121

ABSTRACT

Prolonged virologic failure on 2nd-line protease inhibitor (PI)-based antiretroviral therapy (ART) without emergence of major protease mutations is well recognized and provides an opportunity to study within-host evolution in long-term viremic individuals. Using next-generation sequencing and in silico haplotype reconstruction, we analyzed whole-genome sequences from longitudinal plasma samples of eight chronically infected HIV-1-positive individuals failing 2nd-line regimens from the French National Agency for AIDS and Viral Hepatitis Research (ANRS) 12249 Treatment as Prevention (TasP) trial. On nonsuppressive ART, there were large fluctuations in synonymous and nonsynonymous variant frequencies despite stable viremia. Reconstructed haplotypes provided evidence for selective sweeps during periods of partial adherence, and viral haplotype competition, during periods of low drug exposure. Drug resistance mutations in reverse transcriptase (RT) were used as markers of viral haplotypes in the reservoir, and their distribution over time indicated recombination. We independently observed linkage disequilibrium decay, indicative of recombination. These data highlight dramatic changes in virus population structure that occur during stable viremia under nonsuppressive ART. IMPORTANCE HIV-1 infections are most commonly initiated with a single founder virus and are characterized by extensive inter- and intraparticipant genetic diversity. However, existing literature on HIV-1 intrahost population dynamics is largely limited to untreated infections, predominantly in subtype B-infected individuals. The manuscript characterizes viral population dynamics in long-term viremic treatment-experienced individuals, which has not been previously characterized. These data are particularly relevant for understanding HIV dynamics but can also be applied to other RNA viruses. With this unique data set we propose that the virus is highly unstable, and we have found compelling evidence of HIV-1 within-host viral diversification, recombination, and haplotype competition during nonsuppressive ART.


Subject(s)
Anti-HIV Agents , HIV Infections , HIV Seropositivity , HIV-1 , Anti-HIV Agents/pharmacology , Anti-Retroviral Agents/pharmacology , Anti-Retroviral Agents/therapeutic use , Drug Resistance, Viral/genetics , HIV Infections/drug therapy , HIV Seropositivity/drug therapy , HIV-1/genetics , Humans , Viral Load , Viremia
4.
JCI Insight ; 6(22)2021 11 22.
Article in English | MEDLINE | ID: mdl-34618690

ABSTRACT

HIV infection in the human gastrointestinal (GI) tract is thought to be central to HIV progression, but knowledge of this interaction is primarily limited to cohorts within Westernized countries. Here, we present a large cohort recruited from high HIV endemic areas in South Africa and found that people living with HIV (PLWH) presented at a younger age for investigation in the GI clinic. We identified severe CD4+ T cell depletion in the GI tract, which was greater in the small intestine than in the large intestine and not correlated with years on antiretroviral treatment (ART) or plasma viremia. HIV-p24 staining showed persistent viral expression, particularly in the colon, despite full suppression of plasma viremia. Quantification of mucosal antiretroviral (ARV) drugs revealed no differences in drug penetration between the duodenum and colon. Plasma markers of gut barrier breakdown and immune activation were elevated irrespective of HIV, but peripheral T cell activation was inversely correlated with loss of gut CD4+ T cells in PLWH alone. T cell activation is a strong predictor of HIV progression and independent of plasma viral load, implying that the irreversible loss of GI CD4+ T cells is a key event in the HIV pathogenesis of PLWH in South Africa, yet the underlying mechanisms remain unknown.


Subject(s)
CD4-Positive T-Lymphocytes/metabolism , HIV Infections/immunology , Lymphocyte Activation/immunology , Chronic Disease , Humans
5.
PLoS Pathog ; 17(9): e1009871, 2021 09.
Article in English | MEDLINE | ID: mdl-34555123

ABSTRACT

HIV cerebrospinal fluid (CSF) escape, where HIV is suppressed in blood but detectable in CSF, occurs when HIV persists in the CNS despite antiretroviral therapy (ART). To determine the virus producing cell type and whether lowered CSF ART levels are responsible for CSF escape, we collected blood and CSF from 156 neurosymptomatic participants from Durban, South Africa. We observed that 28% of participants with an undetectable HIV blood viral load showed CSF escape. We detected host cell surface markers on the HIV envelope to determine the cellular source of HIV in participants on the first line regimen of efavirenz, emtricitabine, and tenofovir. We confirmed CD26 as a marker which could differentiate between T cells and macrophages and microglia, and quantified CD26 levels on the virion surface, comparing the result to virus from in vitro infected T cells or macrophages. The measured CD26 level was consistent with the presence of T cell produced virus. We found no significant differences in ART concentrations between CSF escape and fully suppressed individuals in CSF or blood, and did not observe a clear association with drug resistance mutations in CSF virus which would allow HIV to replicate. Hence, CSF HIV in the face of ART may at least partly originate in CD4+ T cell populations.


Subject(s)
Anti-HIV Agents/therapeutic use , HIV Infections/cerebrospinal fluid , HIV Infections/drug therapy , HIV Infections/virology , T-Lymphocytes/virology , Adult , Alkynes/therapeutic use , Benzoxazines/therapeutic use , Cyclopropanes/therapeutic use , Emtricitabine/therapeutic use , Female , HIV-1 , Humans , Male , Middle Aged , Tenofovir/therapeutic use
6.
Antioxidants (Basel) ; 10(8)2021 Aug 13.
Article in English | MEDLINE | ID: mdl-34439535

ABSTRACT

H2S is a potent gasotransmitter in eukaryotes and bacteria. Host-derived H2S has been shown to profoundly alter M. tuberculosis (Mtb) energy metabolism and growth. However, compelling evidence for endogenous production of H2S and its role in Mtb physiology is lacking. We show that multidrug-resistant and drug-susceptible clinical Mtb strains produce H2S, whereas H2S production in non-pathogenic M. smegmatis is barely detectable. We identified Rv3684 (Cds1) as an H2S-producing enzyme in Mtb and show that cds1 disruption reduces, but does not eliminate, H2S production, suggesting the involvement of multiple genes in H2S production. We identified endogenous H2S to be an effector molecule that maintains bioenergetic homeostasis by stimulating respiration primarily via cytochrome bd. Importantly, H2S plays a key role in central metabolism by modulating the balance between oxidative phosphorylation and glycolysis, and it functions as a sink to recycle sulfur atoms back to cysteine to maintain sulfur homeostasis. Lastly, Mtb-generated H2S regulates redox homeostasis and susceptibility to anti-TB drugs clofazimine and rifampicin. These findings reveal previously unknown facets of Mtb physiology and have implications for routine laboratory culturing, understanding drug susceptibility, and improved diagnostics.

7.
Am J Reprod Immunol ; 86(2): e13411, 2021 08.
Article in English | MEDLINE | ID: mdl-33641222

ABSTRACT

PROBLEM: Injectable hormonal contraceptives (IHC) have been associated with altered mucosal and systemic milieu which might increase HIV risk, but most studies have focused on DMPA and not NET-EN, despite the growing popularity and lower HIV risk associated with the latter in observational studies. METHOD OF STUDY: We used high-performance liquid chromatography in combination with tandem triple quadrupole mass spectrometry (HPLC-LC-MS/MS) to measure steroid hormones in plasma samples of CAPRISA004 study participants. Concentrations of 48 cytokines were measured in the cervicovaginal lavage (CVL) and plasma, and their expression was compared between participants with detectable NET-EN (n = 201) versus non-detectable IHC (n = 90). Each log10 cytokine concentration was tested as an outcome in linear-mixed models, with NET-EN detection as the main explanatory variable. Multivariable models were adjusted for potential confounders. RESULTS: In bivariate analysis, detectable NET-EN was associated with reduced cervicovaginal M-CSF (P = 0.008), GM-CSF (P = 0.025) and G-CSF (P = 0.039), and elevated levels MIF (P = 0.008), IL-18 (P = 0.011), RANTES (P = 0.005) and IL-1Rα (P < 0.001). Lower G-CSF (P = 0.011) and elevated IL-1Rα (P = 0.008) remained significant in adjusted models. Multivariable analyses of plasma samples obtained from NET-EN-detectable women showed a significant increase in IP-10 (P = 0.026) and reductions in TNF-ß (P = 0.037), RANTES (P = 0.009), and M-CSF (P < 0.001). While similar growth factor reduction in CVL was noted for both DMPA and NET-EN, similar trends were not observed for endogenous progesterone. CONCLUSIONS: Detectable NET-EN was associated with reduced growth factors in the plasma and genital tract; particularly G-CSF and M-CSF. Our results suggest that while NET-EN is not inflammatory, it may have important immunological effects.


Subject(s)
Contraceptive Agents, Female , Cytokines/immunology , Norethindrone , Vagina/immunology , Adolescent , Adult , Chromatography, Liquid , Contraceptive Agents, Female/administration & dosage , Contraceptive Agents, Female/pharmacokinetics , Female , Humans , Norethindrone/administration & dosage , Norethindrone/pharmacokinetics , South Africa , Tandem Mass Spectrometry
8.
Nat Commun ; 11(1): 6092, 2020 11 30.
Article in English | MEDLINE | ID: mdl-33257709

ABSTRACT

The approval of bedaquiline (BDQ) for the treatment of tuberculosis has generated substantial interest in inhibiting energy metabolism as a therapeutic paradigm. However, it is not known precisely how BDQ triggers cell death in Mycobacterium tuberculosis (Mtb). Using 13C isotopomer analysis, we show that BDQ-treated Mtb redirects central carbon metabolism to induce a metabolically vulnerable state susceptible to genetic disruption of glycolysis and gluconeogenesis. Metabolic flux profiles indicate that BDQ-treated Mtb is dependent on glycolysis for ATP production, operates a bifurcated TCA cycle by increasing flux through the glyoxylate shunt, and requires enzymes of the anaplerotic node and methylcitrate cycle. Targeting oxidative phosphorylation (OXPHOS) with BDQ and simultaneously inhibiting substrate level phosphorylation via genetic disruption of glycolysis leads to rapid sterilization. Our findings provide insight into the metabolic mechanism of BDQ-induced cell death and establish a paradigm for the development of combination therapies that target OXPHOS and glycolysis.


Subject(s)
Anti-Bacterial Agents/pharmacology , Diarylquinolines/pharmacology , Glycolysis/drug effects , Mycobacterium tuberculosis/drug effects , Mycobacterium tuberculosis/metabolism , Antitubercular Agents/pharmacology , Bacterial Proteins/metabolism , Carbon Cycle/drug effects , Citric Acid Cycle/drug effects , Energy Metabolism/drug effects , Glyoxylates , Mycobacterium tuberculosis/genetics , Oxidative Phosphorylation , Tuberculosis/microbiology
9.
JCI Insight ; 5(18)2020 09 17.
Article in English | MEDLINE | ID: mdl-32780727

ABSTRACT

BACKGROUNDTuberculosis (TB) kills more people than any other infection, and new diagnostic tests to identify active cases are required. We aimed to discover and verify novel markers for TB in nondepleted plasma.METHODSWe applied an optimized quantitative proteomics discovery methodology based on multidimensional and orthogonal liquid chromatographic separation combined with high-resolution mass spectrometry to study nondepleted plasma of 11 patients with active TB compared with 10 healthy controls. Prioritized candidates were verified in independent UK (n = 118) and South African cohorts (n = 203).RESULTSWe generated the most comprehensive TB plasma proteome to date, profiling 5022 proteins spanning 11 orders-of-magnitude concentration range with diverse biochemical and molecular properties. We analyzed the predominantly low-molecular weight subproteome, identifying 46 proteins with significantly increased and 90 with decreased abundance (peptide FDR ≤ 1%, q ≤ 0.05). Verification was performed for novel candidate biomarkers (CFHR5, ILF2) in 2 independent cohorts. Receiver operating characteristics analyses using a 5-protein panel (CFHR5, LRG1, CRP, LBP, and SAA1) exhibited discriminatory power in distinguishing TB from other respiratory diseases (AUC = 0.81).CONCLUSIONWe report the most comprehensive TB plasma proteome to date, identifying novel markers with verification in 2 independent cohorts, leading to a 5-protein biosignature with potential to improve TB diagnosis. With further development, these biomarkers have potential as a diagnostic triage test.FUNDINGColciencias, Medical Research Council, Innovate UK, NIHR, Academy of Medical Sciences, Program for Advanced Research Capacities for AIDS, Wellcome Centre for Infectious Diseases Research.


Subject(s)
Biomarkers/blood , Mycobacterium tuberculosis/metabolism , Proteome/analysis , Tuberculosis, Pulmonary/blood , Tuberculosis, Pulmonary/epidemiology , Case-Control Studies , Female , Follow-Up Studies , Gene Regulatory Networks , Humans , Male , Peru/epidemiology , Prospective Studies , Proteome/metabolism , ROC Curve , South Africa/epidemiology , Tuberculosis, Pulmonary/microbiology , Tuberculosis, Pulmonary/pathology
10.
EClinicalMedicine ; 22: 100344, 2020 May.
Article in English | MEDLINE | ID: mdl-32510047

ABSTRACT

BACKGROUND: Early combination antiretroviral therapy (cART) reduces the size of the viral reservoir in paediatric and adult HIV infection. Very early-treated children may have higher cure/remission potential. METHODS: In an observational study of 151 in utero (IU)-infected infants in KwaZulu-Natal, South Africa, whose treatment adhered strictly to national guidelines, 76 infants diagnosed via point-of-care (PoC) testing initiated cART at a median of 26 h (IQR 18-38) and 75 infants diagnosed via standard-of-care (SoC) laboratory-based testing initiated cART at 10 days (IQR 8-13). We analysed mortality, time to suppression of viraemia, and maintenance of aviraemia over the first 2 years of life. FINDINGS: Baseline plasma viral loads were low (median 8000 copies per mL), with 12% of infants having undetectable viraemia pre-cART initiation. However, barely one-third (37%) of children achieved suppression of viraemia by 6 months that was maintained to >12 months. 24% had died or were lost to follow up by 6 months. Infant mortality was 9.3%. The high-frequency virological failure in IU-infected infants was associated not with transmitted or acquired drug-resistant mutations but with cART non-adherence (plasma cART undetectable/subtherapeutic, p<0.0001) and with concurrent maternal cART failure (OR 15.0, 95%CI 5.6-39.6; p<0.0001). High-frequency virological failure was observed in PoC- and SoC-tested groups of children. INTERPRETATION: The success of early infant testing and cART initiation strategies is severely limited by subsequent cART non-adherence in HIV-infected children. Although there are practical challenges to administering paediatric cART formulations, these are overcome by mothers who themselves are cART-adherent. These findings point to the ongoing obligation to address the unmet needs of the mothers. Eliminating the particular barriers preventing adequate treatment for these vulnerable women and infants need to be prioritised in order to achieve durable suppression of viraemia on cART, let alone HIV cure/remission, in HIV-infected children. FUNDING: Wellcome Trust, National Institutes of Health.

12.
Nat Commun ; 11(1): 1767, 2020 04 14.
Article in English | MEDLINE | ID: mdl-32286302

ABSTRACT

Female children and adults typically generate more efficacious immune responses to vaccines and infections than age-matched males, but also suffer greater immunopathology and autoimmune disease. We here describe, in a cohort of > 170 in utero HIV-infected infants from KwaZulu-Natal, South Africa, fetal immune sex differences resulting in a 1.5-2-fold increased female susceptibility to intrauterine HIV infection. Viruses transmitted to females have lower replicative capacity (p = 0.0005) and are more type I interferon-resistant (p = 0.007) than those transmitted to males. Cord blood cells from females of HIV-uninfected sex-discordant twins are more activated (p = 0.01) and more susceptible to HIV infection in vitro (p = 0.03). Sex differences in outcome include superior maintenance of aviraemia among males (p = 0.007) that is not explained by differential antiretroviral therapy adherence. These data demonstrate sex-specific innate immune selection of HIV associated with increased female susceptibility to in utero infection and enhanced functional cure potential among infected males.


Subject(s)
HIV Infections/immunology , HIV-1/immunology , HIV-1/pathogenicity , Immunity, Innate/physiology , Anti-Retroviral Agents/therapeutic use , Cohort Studies , Female , HIV Infections/drug therapy , HIV Infections/metabolism , HIV-1/drug effects , Humans , Immunity, Innate/genetics , Infectious Disease Transmission, Vertical , Interferons/metabolism , Kaplan-Meier Estimate , Male , Phylogeny , Sex Factors , Translational Research, Biomedical
13.
Proc Natl Acad Sci U S A ; 117(12): 6663-6674, 2020 03 24.
Article in English | MEDLINE | ID: mdl-32139610

ABSTRACT

The ubiquitous gasotransmitter hydrogen sulfide (H2S) has been recognized to play a crucial role in human health. Using cystathionine γ-lyase (CSE)-deficient mice, we demonstrate an unexpected role of H2S in Mycobacterium tuberculosis (Mtb) pathogenesis. We showed that Mtb-infected CSE-/- mice survive longer than WT mice, and support reduced pathology and lower bacterial burdens in the lung, spleen, and liver. Similarly, in vitro Mtb infection of macrophages resulted in reduced colony forming units in CSE-/- cells. Chemical complementation of infected WT and CSE-/- macrophages using the slow H2S releaser GYY3147 and the CSE inhibitor DL-propargylglycine demonstrated that H2S is the effector molecule regulating Mtb survival in macrophages. Furthermore, we demonstrate that CSE promotes an excessive innate immune response, suppresses the adaptive immune response, and reduces circulating IL-1ß, IL-6, TNF-α, and IFN-γ levels in response to Mtb infection. Notably, Mtb infected CSE-/- macrophages show increased flux through glycolysis and the pentose phosphate pathway, thereby establishing a critical link between H2S and central metabolism. Our data suggest that excessive H2S produced by the infected WT mice reduce HIF-1α levels, thereby suppressing glycolysis and production of IL-1ß, IL-6, and IL-12, and increasing bacterial burden. Clinical relevance was demonstrated by the spatial distribution of H2S-producing enzymes in human necrotic, nonnecrotic, and cavitary pulmonary tuberculosis (TB) lesions. In summary, CSE exacerbates TB pathogenesis by altering immunometabolism in mice and inhibiting CSE or modulating glycolysis are potential targets for host-directed TB control.


Subject(s)
Carbon/metabolism , Cystathionine gamma-Lyase/physiology , Hydrogen Sulfide/toxicity , Mycobacterium tuberculosis/immunology , Tuberculosis, Pulmonary/etiology , Alkynes/pharmacology , Animals , Cystathionine gamma-Lyase/antagonists & inhibitors , Cytokines/metabolism , Enzyme Inhibitors/pharmacology , Glycine/analogs & derivatives , Glycine/pharmacology , Glycolysis , Hydrogen Sulfide/metabolism , Lymphocytes/drug effects , Lymphocytes/immunology , Lymphocytes/metabolism , Macrophages/drug effects , Macrophages/immunology , Macrophages/metabolism , Mice , Mice, Inbred C57BL , Mice, Knockout , Mycobacterium tuberculosis/drug effects , Myeloid Cells/drug effects , Myeloid Cells/immunology , Myeloid Cells/metabolism , Signal Transduction , Tuberculosis, Pulmonary/metabolism , Tuberculosis, Pulmonary/pathology
14.
Nat Commun ; 11(1): 557, 2020 Jan 28.
Article in English | MEDLINE | ID: mdl-31992699

ABSTRACT

Hydrogen sulfide (H2S) is involved in numerous pathophysiological processes and shares overlapping functions with CO and •NO. However, the importance of host-derived H2S in microbial pathogenesis is unknown. Here we show that Mtb-infected mice deficient in the H2S-producing enzyme cystathionine ß-synthase (CBS) survive longer with reduced organ burden, and that pharmacological inhibition of CBS reduces Mtb bacillary load in mice. High-resolution respirometry, transcriptomics and mass spectrometry establish that H2S stimulates Mtb respiration and bioenergetics predominantly via cytochrome bd oxidase, and that H2S reverses •NO-mediated inhibition of Mtb respiration. Further, exposure of Mtb to H2S regulates genes involved in sulfur and copper metabolism and the Dos regulon. Our results indicate that Mtb exploits host-derived H2S to promote growth and disease, and suggest that host-directed therapies targeting H2S production may be potentially useful for the management of tuberculosis and other microbial infections.


Subject(s)
Hydrogen Sulfide/pharmacology , Mycobacterium tuberculosis/drug effects , Mycobacterium tuberculosis/metabolism , Mycobacterium tuberculosis/pathogenicity , Animals , Copper/metabolism , Cystathionine beta-Synthase/genetics , Cystathionine beta-Synthase/metabolism , Cytokines/blood , Disease Models, Animal , Electron Transport Complex IV/metabolism , Energy Metabolism , Female , Gene Expression Regulation, Bacterial/drug effects , Homeostasis , Lung/pathology , Macrophages , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Mycobacterium tuberculosis/genetics , RAW 264.7 Cells , Regulon , Sulfur/metabolism , Transcriptome , Tuberculosis
15.
Article in English | MEDLINE | ID: mdl-31964788

ABSTRACT

The distribution of N-acetyltransferase 2 gene (NAT2) polymorphisms varies considerably among different ethnic groups. Information on NAT2 single-nucleotide polymorphisms in the South African population is limited. We investigated NAT2 polymorphisms and their effect on isoniazid pharmacokinetics (PK) in Zulu black HIV-infected South Africans in Durban, South Africa. HIV-infected participants with culture-confirmed pulmonary tuberculosis (TB) were enrolled from two unrelated studies. Participants with culture-confirmed pulmonary TB were genotyped for the NAT2 polymorphisms 282C>T, 341T>C, 481C>T, 857G>A, 590G>A, and 803A>G using Life Technologies prevalidated TaqMan assays (Life Technologies, Paisley, UK). Participants underwent sampling for determination of plasma isoniazid and N-acetyl-isoniazid concentrations. Among the 120 patients, 63/120 (52.5%) were slow metabolizers (NAT2*5/*5), 43/120 (35.8%) had an intermediate metabolism genotype (NAT2*5/12), and 12/120 (11.7%) had a rapid metabolism genotype (NAT2*4/*11, NAT2*11/12, and NAT2*12/12). The NAT2 alleles evaluated in this study were *4, *5C, *5D, *5E, *5J, *5K, *5KA, *5T, *11A, *12A/12C, and *12M. NAT2*5 was the most frequent allele (70.4%), followed by NAT2*12 (27.9%). Fifty-eight of 60 participants in study 1 had PK results. The median area under the concentration-time curve from 0 to infinity (AUC0-∞) was 5.53 (interquartile range [IQR], 3.63 to 9.12 µg h/ml), and the maximum concentration (Cmax) was 1.47 µg/ml (IQR, 1.14 to 1.89 µg/ml). Thirty-four of 40 participants in study 2 had both PK results and NAT2 genotyping results. The median AUC0-∞ was 10.76 µg·h/ml (IQR, 8.24 to 28.96 µg·h/ml), and the Cmax was 3.14 µg/ml (IQR, 2.39 to 4.34 µg/ml). Individual polymorphisms were not equally distributed, with some being represented in small numbers. The genotype did not correlate with the phenotype, with those with a rapid acetylator genotype showing higher AUC0-∞ values than those with a slow acetylator genotype, but the difference was not significant (P = 0.43). There was a high prevalence of slow acetylator genotypes, followed by intermediate and then rapid acetylator genotypes. The poor concordance between genotype and phenotype suggests that other factors or genetic loci influence isoniazid metabolism, and these warrant further investigation in this population.


Subject(s)
Antitubercular Agents/pharmacokinetics , Arylamine N-Acetyltransferase/genetics , Isoniazid/pharmacokinetics , Tuberculosis, Pulmonary/drug therapy , AIDS-Related Opportunistic Infections/drug therapy , AIDS-Related Opportunistic Infections/microbiology , Acetylation , Adolescent , Adult , Antitubercular Agents/adverse effects , Black People/genetics , Female , Gene Frequency , Genotype , Haplotypes , Humans , Isoniazid/adverse effects , Isoniazid/analogs & derivatives , Male , Middle Aged , South Africa , Tuberculosis, Pulmonary/virology , Young Adult
16.
Mucosal Immunol ; 13(3): 449-459, 2020 05.
Article in English | MEDLINE | ID: mdl-31896762

ABSTRACT

Long-acting injectable contraceptives have been associated with mucosal immune changes and increased HIV acquisition, but studies have often been hampered by the inaccuracy of self-reported data, unknown timing of injection, and interactions with mucosal transmission co-factors. We used mass spectrometry to quantify the plasma concentrations of injectable contraceptives in women from the CAPRISA004 study (n = 664), with parallel quantification of 48 cytokines and >500 host proteins in cervicovaginal lavage. Higher DMPA levels were associated with reduced CVL concentrations of GCSF, MCSF, IL-16, CTACK, LIF, IL-1α, and SCGF-ß in adjusted linear mixed models. Dose-dependent relationships between DMPA concentration and genital cytokines were frequently observed. Unsupervised clustering of host proteins by DMPA concentration suggest that women with low DMPA had increases in proteins associated with mucosal fluid function, growth factors, and keratinization. Although DMPA was not broadly pro-inflammatory, DMPA was associated with increased IP-10 in HSV-2 seropositive and older women. DMPA-cytokine associations frequently differed by vaginal microbiome; in non-Lactobacillus-dominant women, DMPA was associated with elevated IL-8, MCP-1, and IP-10 concentrations. These data confirm a direct, concentration-dependant effect of DMPA on functionally important immune factors within the vaginal compartment. The biological effects of DMPA may vary depending on age, HSV-2 status, and vaginal microbiome composition.


Subject(s)
Cervix Uteri/drug effects , Cervix Uteri/metabolism , Contraceptive Agents, Female/pharmacokinetics , Gene Expression Regulation/drug effects , Intercellular Signaling Peptides and Proteins/genetics , Vagina/drug effects , Vagina/metabolism , Adult , Biomarkers , Cervix Uteri/microbiology , Chromatography, Liquid , Contraceptive Agents, Female/administration & dosage , Cytokines/biosynthesis , Drug Monitoring , Female , Humans , Microbiota , Mucous Membrane/immunology , Mucous Membrane/metabolism , Mucous Membrane/microbiology , South Africa , Tandem Mass Spectrometry , Vagina/microbiology , Young Adult
17.
Pharmacogenomics ; 20(4): 225-240, 2019 03.
Article in English | MEDLINE | ID: mdl-30767706

ABSTRACT

AIM: We report the prevalence and effect of genetic variability on pharmacokinetic parameters of isoniazid and rifampicin. MATERIALS & METHODS: Genotypes for SLCO1B1, NAT2, PXR, ABCB1 and UGT1A genes were determined using a TaqMan® Genotyping OpenArray™. Nonlinear mixed-effects models were used to describe drug pharmacokinetics. RESULTS: Among 172 patients, 18, 43 and 34% were classified as rapid, intermediate and slow NAT2 acetylators, respectively. Of the 58 patients contributing drug concentrations, rapid and intermediate acetylators had 2.3- and 1.6-times faster isoniazid clearance than slow acetylators. No association was observed between rifampicin pharmacokinetics and SLCO1B1, ABCB1, UGT1A or PXR genotypes. CONCLUSION: Clinical relevance of the effects of genetic variation on isoniazid concentrations and low first-line tuberculosis drug exposures observed require further investigation.


Subject(s)
Arylamine N-Acetyltransferase/genetics , Isoniazid/pharmacokinetics , Rifampin/pharmacokinetics , Tuberculosis/drug therapy , ATP Binding Cassette Transporter, Subfamily B/genetics , Adult , Female , Genotype , Glucuronosyltransferase/genetics , Humans , Isoniazid/administration & dosage , Liver-Specific Organic Anion Transporter 1/genetics , Male , Polymorphism, Single Nucleotide/genetics , Recurrence , Rifampin/administration & dosage , Tuberculosis/genetics , Tuberculosis/pathology
18.
Elife ; 72018 11 16.
Article in English | MEDLINE | ID: mdl-30444490

ABSTRACT

How Mycobacterium tuberculosis (Mtb) rewires macrophage energy metabolism to facilitate survival is poorly characterized. Here, we used extracellular flux analysis to simultaneously measure the rates of glycolysis and respiration in real time. Mtb infection induced a quiescent energy phenotype in human monocyte-derived macrophages and decelerated flux through glycolysis and the TCA cycle. In contrast, infection with the vaccine strain, M. bovis BCG, or dead Mtb induced glycolytic phenotypes with greater flux. Furthermore, Mtb reduced the mitochondrial dependency on glucose and increased the mitochondrial dependency on fatty acids, shifting this dependency from endogenous fatty acids in uninfected cells to exogenous fatty acids in infected macrophages. We demonstrate how quantifiable bioenergetic parameters of the host can be used to accurately measure and track disease, which will enable rapid quantifiable assessment of drug and vaccine efficacy. Our findings uncover new paradigms for understanding the bioenergetic basis of host metabolic reprogramming by Mtb.


Subject(s)
Citric Acid Cycle/genetics , Fatty Acids/metabolism , Glucose/metabolism , Glycolysis/genetics , Host-Pathogen Interactions , Macrophages/microbiology , Mycobacterium tuberculosis/metabolism , Cell Differentiation/drug effects , Cell Respiration , Genes, Reporter , Green Fluorescent Proteins/genetics , Green Fluorescent Proteins/metabolism , Humans , Macrophages/metabolism , Metabolome , Mitochondria/metabolism , Mycobacterium bovis/growth & development , Mycobacterium bovis/metabolism , Mycobacterium tuberculosis/growth & development , THP-1 Cells , Tetradecanoylphorbol Acetate/pharmacology
20.
Nat Commun ; 8(1): 588, 2017 09 19.
Article in English | MEDLINE | ID: mdl-28928454

ABSTRACT

Tuberculosis chemotherapy is dependent on the use of the antibiotic pyrazinamide, which is being threatened by emerging drug resistance. Resistance is mediated through mutations in the bacterial gene pncA. Methods for testing pyrazinamide susceptibility are difficult and rarely performed, and this means that the full spectrum of pncA alleles that confer clinical resistance to pyrazinamide is unknown. Here, we performed in vitro saturating mutagenesis of pncA to generate a comprehensive library of PncA polymorphisms resultant from a single-nucleotide polymorphism. We then screened it for pyrazinamide resistance both in vitro and in an infected animal model. We identify over 300 resistance-conferring substitutions. Strikingly, these mutations map throughout the PncA structure and result in either loss of enzymatic activity and/or decrease in protein abundance. Our comprehensive mutational and screening approach should stand as a paradigm for determining resistance mutations and their mechanisms of action.The antibiotic pyrazinamide is central to tuberculosis treatment regimens, globally. Despite its efficacy, resistance to the drug is increasing. Here, Eric Rubin and colleagues characterise the genetic basis of pyrazinamide resistance.


Subject(s)
Amidohydrolases/genetics , Antitubercular Agents/pharmacology , Drug Resistance, Bacterial , Mycobacterium tuberculosis/enzymology , Mycobacterium tuberculosis/genetics , Polymorphism, Single Nucleotide , Pyrazinamide/pharmacology , Amidohydrolases/metabolism , Humans , Mutation , Mycobacterium tuberculosis/drug effects , Polymorphism, Single Nucleotide/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...