Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
J Contemp Brachytherapy ; 13(2): 188-194, 2021 Apr.
Article in English | MEDLINE | ID: mdl-33897793

ABSTRACT

PURPOSE: 3D printing has become a popular and widely available technique of rapid prototyping. The impact of used materials on the dose distribution has been studied for high energy sources. However, brachytherapy sources emit lower energy photons, and materials used in 3D printing may differ. This study was conducted to analyze the influence of common materials (polylactic acid - PLA and acrylonitrile butadiene styrene - ABS) used in stereolithography. MATERIAL AND METHODS: A 3D-printed phantom was designed, printed, and used to calibrate Gafchromic films. In the next step, a range of 1 mm thick plates of PLA and ABS (from zero to thirty) were inserted between source and detector to measure the impact of studied materials on delivered dose. Measurements were performed using a calibrated radiochromic film and Farmer ionization chamber in water. RESULTS: No statistically significant correlation (p = 0.4854) between the thickness of inserted PLA and the dose delivered to the film was obtained. With ionization chamber, Spearman's rank order test showed a significant correlation (p = 0.00004); however, the correlation was found weak. In case of ABS measurement, a statistically significant (p = 0.0159), yet weak negative correlation was found between the thickness of used material and the dose delivered to the film. On the other hand, a weak statistically significant (p = 0.0212) but positive correlation was found when the dose was measured with Farmer ionization chamber. We find these correlations false, as all measured doses were within the measurement uncertainty range (film ±8.0%, Farmer ±8.8%) from 100% of the prescribed dose. CONCLUSIONS: According to obtained results, with the accuracy of measurement under clinical conditions, the impact of highly filled PLA and ABS printed objects on the dose distribution from an 192Ir source in water can be omitted.

2.
Carbohydr Polym ; 140: 74-87, 2016 Apr 20.
Article in English | MEDLINE | ID: mdl-26876830

ABSTRACT

This work describes a gelation of chitosan solution with silver nitrate. Above the critical concentration of chitosan (c*), continuous hydrogels of chitosan-silver can be formed. At lower concentrations, the formation of nano- and micro-hydrogels is discussed. The sol-gel analysis was performed to characterise the hydrogels' swelling properties. Moreover, the following were employed: (i) mechanical testing of hydrogels, (ii) inductively coupled plasma-optical emission spectroscopy (ICP-OES) for the measurement of silver concentration, (iii) scanning electron microscopy (SEM) to examine the morphology of products obtained, and (iv) dynamic light scattering (DLS) and UV-vis spectrophotometry to examine products formed at low concentration of chitosan (c

Subject(s)
Anti-Bacterial Agents/chemistry , Chitosan/chemistry , Hydrogels/chemistry , Silver Nitrate/chemistry , Anti-Bacterial Agents/pharmacology , Bacillus subtilis/drug effects , Escherichia coli/drug effects , Hydrogels/pharmacology , Kinetics , Molecular Weight , Nanostructures/chemistry , Surface Properties , Textiles/microbiology
3.
J Mater Chem B ; 4(8): 1528-1534, 2016 Feb 28.
Article in English | MEDLINE | ID: mdl-32263119

ABSTRACT

Hydrogels exhibiting Volume Phase Transition (VPT) are considered as useful biomaterials for the preparation of various drug delivery systems. Such hydrogels are commonly based on thermo-responsive polymers, such as poly(2-(2-methoxyethoxy)ethyl methacrylate) (PMEO2MA), that have lower critical solution temperature (LCST) in aqueous solutions. In this work, PMEO2MA hydrogels were used as model systems to study the influence of encapsulated drugs, such as ibuprofen and salicylate sodium salts, on the temperature and dynamics of the VPT. Both thermo-optical analysis and differential scanning calorimetry have shown that the VPT becomes broader and shifts towards higher temperatures with increasing drug concentration. Three regimes of VPT in PMEO2MA gels were distinguished. The first two, related to the breaking of the strong water-polymer interactions and to the network collapse, slow down with increasing drug concentration. The last regime, corresponding to the slow diffusion of a residual solution from a collapsing network, becomes visible only for systems with high content of drug. Raman spectroscopy studies show that the observed effect is not connected to direct interactions between polymers and drugs. This suggests that the drug molecules are able to stabilise water-polymer interactions in thermo-responsive hydrogels. Consequently, they are able to modulate VPT and have a significant influence on the delivery process.

4.
Arch Med Sci ; 11(1): 210-9, 2015 Mar 16.
Article in English | MEDLINE | ID: mdl-25861309

ABSTRACT

INTRODUCTION: Peripheral nerve disruptions, frequently occurring during limb injuries, give rise to serious complications of patients recovery resulting from limitations in neural tissue regeneration capabilities. To overcome this problem bridging techniques utilizing guidance channels gain their importance. Biodegradable polymeric tubes seem to be more prospective then non-degradable materials - no necessity of implant removal and possibilities of release of incorporated drugs or biologically active agents that may support nerve regeneration process are the main advantages. MATERIAL AND METHODS: Polymer blend of commercial poly(L-lactic acid) (PLLA) and in-house synthesized poly(trimethylene carbonate) (PTMC) were processed in an organic solvent - phase inversion process on a supporting rod - to form a guidance porous tube of 1.1 mm inner diameter. In vivo experiments on rat's cut femoral nerve by using either the tubes or end-to-end suturing (control group) involved 22 and 19 rats, respectively. Motor recovery of operated limbs, neuroma occurrence and histopathology of explanted nerves were evaluated after 30, 60 and 90 days of implantation. RESULTS: Motor recovery of the limbs was of similar rate for the two animal groups. The neuroma formation was evident in over 90% control specimens, while for the bridging group it was less than 40% of all evaluable samples (p = 0.0022). Biocompatibility of applied materials was affirmed by moderate tissue response. CONCLUSIONS: Application of the biodegradable PLLA/PTMC polymeric tubes effectively supports regeneration of discontinued nerves. The applied material prevents neuroma formation, by reducing the scar tissue formation time and, thus, accelerating the process of neural tissue restoration.

5.
Carbohydr Polym ; 91(1): 115-27, 2013 Jan 02.
Article in English | MEDLINE | ID: mdl-23044112

ABSTRACT

In this study, we present facile antimicrobial finishing of cotton textiles. Screen printing was used for surface-finishing of cotton using a printing paste containing silver nitrate. UVC irradiation was applied to convert silver nitrate into a color product, thus also changing the color of the textiles. The color, its strength and stability of samples, depend on absorbed UVC energy and the formula of the printing paste. Scanning electron microscopy with the energy dispersive X-ray spectrometry revealed formation of silver particles on cotton threads; X-ray diffraction analysis and the time-of-flight secondary ion mass spectrometry did not provide clear information on these products. Microbiological studies revealed that the samples inhibited proliferation of Escherichia coli, Bacillus subtilis and Staphylococcus aureus. Washing fastness tests confirmed resistance of the samples to at least 50 washings. Additionally, the inhibition zones increased as the number of washing cycles increased, which is unique for such samples. This work also presents an approach to the design of antimicrobially finished workwear.


Subject(s)
Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Cotton Fiber , Silver Nitrate/chemistry , Ultraviolet Rays , Bacteria/drug effects , Drug Stability , Protective Clothing/microbiology , Tensile Strength , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...