Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Materials (Basel) ; 17(3)2024 Jan 30.
Article in English | MEDLINE | ID: mdl-38591539

ABSTRACT

The article describes machine learning using artificial neural networks (ANNs) to develop the parameters of the friction stir welding (FSW) process for three types of aluminum joints (EN AW 7075). The ANNs were built using a total of 608 experimental data. Two types of networks were built. The first one was used to classify good/bad joints with MLP 7-19-2 topology (one input layer with 7 neurons, one hidden layer with 19 neurons, and one output layer with 2 neurons), and the second one was used to regress the tensile load-bearing capacity with MLP 7-19-1 topology (one input layer with 7 neurons, one hidden layer with 19 neurons, and one output layer with 1 neuron). FSW parameters, such as rotational speed, welding speed, and joint and tool geometry, were used as input data for ANN training. The quality of the FSW joint was assessed in terms of microstructure and mechanical properties based on a case study. The usefulness of both trained neural networks has been demonstrated. The quality of the validation set for the regression network was approximately 93.6%, while the errors for the confusion matrix of the test set never exceeded 6%. Only 184 epochs were needed to train the regression network. The quality of the validation set was approximately 87.1%. Predictive maps were developed and presented in the work, allowing for the selection of optimal parameters of the FSW process for three types of joints.

2.
Materials (Basel) ; 16(19)2023 Oct 06.
Article in English | MEDLINE | ID: mdl-37834721

ABSTRACT

BACKGROUND: Although many works focus on increasing the energy efficiency of buildings, there are still a number of problems that need to be solved, such as reducing heat losses at the window-to-wall interface, especially since the requirements for saving energy used for heating/cooling rooms are constantly increasing. This paper analyses the impact of the material parameters of the external wall and the window installation in the insulation layer on the size of thermal bridges around the window. PURPOSE: The aim of the work is to demonstrate the benefits resulting from the correct installation of the window, the appropriate location of the window in relation to the face of the external wall, as well as the correct selection of construction materials. METHODOLOGY: In order to show the improvement in the energy efficiency of buildings, an analysis of the heating/cooling energy consumption was carried out for the selected buildings. The thermal and humidity analyses were carried out using TRISCO program, while the economic analysis was performed using the Audytor OZC program. RESULTS: It was found that the proposed system of window installation in the thermal insulation layer reduced the annual heating demand by at least 10% on average. CONCLUSIONS: It has been shown that the method of window installation and the type of the wall structural materials are interrelated and therefore should be considered simultaneously. Their proper selection allows for a reduction in the amount of energy needed for heating and cooling buildings, and thus a reduction of heating/cooling costs, as well as limiting greenhouse gas emissions.

3.
Materials (Basel) ; 16(17)2023 Aug 22.
Article in English | MEDLINE | ID: mdl-37687434

ABSTRACT

The growing demand for watertight concrete structures is conducive to the development of research in this area, but their results are rarely published. In order to partially fill this gap, the authors of the publication present the results of research into the effect of fly ash addition on the watertightness of concrete. Prior to the tests, a recipe for a concrete mix with the addition of a sealing admixture modified with fly ash was developed. The following properties were analyzed: consistency of the concrete mix, air content in the concrete mix, compressive strength of concrete, depth of penetration of water under pressure, and frost resistance of concrete for F150 level. The work meets the expectations of the construction industry with respect to the production of concrete structures resistant not only to the penetration of water into concrete but also resistant to aggressive substances dissolved in water that accelerate the destruction of concrete and corrosion of reinforcement bars. Based on the test results, it was found that the addition of fly ash to the concrete mix enhances the positive impact of the applied sealing admixture, increasing the tightness of the concrete. It reduces the depth of penetration of water under pressure and therefore increases the frost resistance of concrete.

4.
Materials (Basel) ; 16(14)2023 Jul 20.
Article in English | MEDLINE | ID: mdl-37512399

ABSTRACT

One of the main problems during sheet metal forming is the reduction in coefficient of friction and separation of contact surfaces in order to eliminate buildups of the formed material on the forming tools. For this purpose, technological lubricants based on mineral or synthetic oils are usually used. Unfortunately, their removal from the drawn parts and their subsequent utilization pose many problems and are expensive. Environmentally benign lubricants based on vegetable oils with the addition of boric acid could be an effective alternative to lubricants based on mineral and synthetic oils; however, the solubility of boric acid in oils is limited. Therefore, the paper proposes new, effective, and environmentally friendly methods for applying boric acid to the metal sheet by spraying it on a thin rapeseed oil layer previously applied to the metal sheet or by spraying a 25% solution of boric acid in methyl alcohol onto the sheet. The effectiveness of such lubrication was assessed on the basis of the so-called strip drawing test, Erichsen cupping test, and formation of cylindrical drawn parts in industrial conditions. The tests showed that the addition of boric acid was most effective for forming the DC01 steel sheet, reducing the coefficient of friction by about 60% compared to base oil lubrication. Although its usefulness is lower in the case of other frictional pairs, it eliminates the phenomenon of the formed material sticking to the tool, thus extending the life of the forming tools. The use of the proposed solution reduces production costs and indirectly boosts environmental protection. Moreover, an explanation of the tribological mechanism contributing to the lubrication action of boric acid is given.

5.
Materials (Basel) ; 16(13)2023 Jul 03.
Article in English | MEDLINE | ID: mdl-37445101

ABSTRACT

The article presents an original approach to determining the basic parameters of rotational friction welding (RFW) based on the analysis of friction heat transfer at the faying surfaces. Dissimilar Ti Grade 2/AA 5005 joints were used to demonstrate the method. The work established that for the analyzed joint, the optimum temperature at the faying surface that allow for a good quality weld to be obtained should be ~505 °C. On this basis, a map of optimal parameters was developed to achieve this temperature. This approach could potentially allow for more precise control of the welding process, leading to better joint quality and performance. The paper includes both a description of the technological process of friction welding and an attempt to explain the mechanism of the phenomena occurring in the welding area. The numerical calculations presented in the article were carried out using the ADINA System v. 9.8.2, which allows for the consideration of heat friction in the axial symmetric thermo-mechanical model. Frictional resistance was determined by the temperature-dependent friction coefficient. The assumed thermo-mechanical model required the determination of elastic-plastic properties versus temperature for the analyzed materials. The simulations of the friction welding were carried out for the different welding parameters and time. The different variants of friction welding were modelled.

6.
Materials (Basel) ; 16(6)2023 Mar 10.
Article in English | MEDLINE | ID: mdl-36984103

ABSTRACT

Friction, wear, and lubrication are inherent to all metal-forming processes. Unfortunately, they are particularly troublesome when forming titanium materials, which tend to form titanium buildup on the working surfaces of the forming tools. Lubrication is one of the most effective ways to separate contacting surfaces and eliminate galling, thus reducing tool wear. The paper presents the tribological aspects of titanium sheets forming using environmentally friendly lubricants with the addition of boric acid. The lubricant's effectiveness was assessed on the basis of technological tests, such as the strip drawing test, the Erichsen cupping test, and the formation of spherical drawn parts in industrial conditions. Moreover, the results of the numerical simulation of forming a titanium hat-shaped part are presented. Numerical calculations of forming processes were performed using the PamStamp 2G system based on the finite element method. Both experiments and numerical analyses showed the positive effect of lubricants with boric acid on sheet titanium forming.

7.
Materials (Basel) ; 15(5)2022 Feb 25.
Article in English | MEDLINE | ID: mdl-35268970

ABSTRACT

The paper analyses the forming of the surgical instrument handles made of Grade 2 titanium sheets. Sheet metal forming is a technology ensuring high strength and light weight of products. Replacing stainless steels with titanium further reduces instrument weight and additionally provides the required resistance to corrosive environments typical for surgeries. The low instrument weight is important to prevent fatigue of surgeons and allow them to maintain high operational accuracy during long term surgeries. The numerical analysis of the technological process was performed in order to adapt it to forming tool handles using titanium sheets instead of steel sheets. The numerical calculations were experimentally verified. It was found that, in the case of titanium handles, it is necessary to use a blank holder in the first forming operation to eliminate sheet wrinkling in the flange area. The shape and dimensional accuracy of the drawn part after trimming were high enough and the 4th forming operation became unnecessary. Moreover, the process modification included lubrication using rapeseed oil with the addition of boric acid, which effectively prevents the galling of titanium on the working surfaces of the steel tools and ensures a more uniform distribution of plastic strains in the drawn part.

SELECTION OF CITATIONS
SEARCH DETAIL
...