Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 39
Filter
1.
J Med Genet ; 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38834293

ABSTRACT

BACKGROUND: No validation has been conducted for the BOADICEA multifactorial breast cancer risk prediction model specifically in BRCA1/2 pathogenic variant (PV) carriers to date. Here, we evaluated the performance of BOADICEA in predicting 5-year breast cancer risks in a prospective cohort of BRCA1/2 PV carriers ascertained through clinical genetic centres. METHODS: We evaluated the model calibration and discriminatory ability in the prospective TRANsIBCCS cohort study comprising 1614 BRCA1 and 1365 BRCA2 PV carriers (209 incident cases). Study participants had lifestyle, reproductive, hormonal, anthropometric risk factor information, a polygenic risk score based on 313 SNPs and family history information. RESULTS: The full multifactorial model considering family history together with all other risk factors was well calibrated overall (E/O=1.07, 95% CI: 0.92 to 1.24) and in quintiles of predicted risk. Discrimination was maximised when all risk factors were considered (Harrell's C-index=0.70, 95% CI: 0.67 to 0.74; area under the curve=0.79, 95% CI: 0.76 to 0.82). The model performance was similar when evaluated separately in BRCA1 or BRCA2 PV carriers. The full model identified 5.8%, 12.9% and 24.0% of BRCA1/2 PV carriers with 5-year breast cancer risks of <1.65%, <3% and <5%, respectively, risk thresholds commonly used for different management and risk-reduction options. CONCLUSION: BOADICEA may be used to aid personalised cancer risk management and decision-making for BRCA1 and BRCA2 PV carriers. It is implemented in the free-access CanRisk tool (https://www.canrisk.org/).

2.
Genet Med ; : 101171, 2024 May 31.
Article in English | MEDLINE | ID: mdl-38828701

ABSTRACT

PURPOSE: Female CHEK2 c.1100delC heterozygotes are eligible for additional breast surveillance due to an increased breast cancer risk. Increased risks for other cancers have been reported. We studied whether CHEK2 c.1100delC is associated with an increased risk for other cancers within these families. METHODS: Including 10,780 individuals from 609 families, we calculated standardized incidence rates (SIRs) and absolute excess risk (AER, per 10.000 person years) by comparing first-reported cancer derived from the pedigrees with general Dutch population rates from 1970 onwards. Attained-age analyses were performed for sites in which significant increased risks were found. Considering study design, we primarily focused on cancer risk in women. RESULTS: We found significant increased risks of colorectal cancer (CRC; SIR=1.43, 95%CI=1.14-1.76; AER=1.43) and hematological cancers (SIR=1.32; 95%CI=1.02-1.67; AER=0.87). CRC was significantly more frequent from age 45 onwards. CONCLUSION: A significantly increased risk of CRC, and hematological cancers in women was found, starting at a younger age than expected. Currently, colorectal surveillance starts at age 45 in high-risk individuals. Our results suggest that some CHEK2 c.1100delC families might benefit from this surveillance as well, however, further research is needed to determine who may profit from this additional colorectal surveillance.

3.
Breast ; 73: 103611, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38039887

ABSTRACT

To determine the changes in surveillance category by adding a polygenic risk score based on 311 breast cancer (BC)-associated variants (PRS311), questionnaire-based risk factors and breast density on personalized BC risk in unaffected women from Dutch CHEK2 c.1100delC families. In total, 117 unaffected women (58 heterozygotes and 59 non-carriers) from CHEK2 families were included. Blood-derived DNA samples were genotyped with the GSAMDv3-array to determine PRS311. Lifetime BC risk was calculated in CanRisk, which uses data from the Breast and Ovarian Analysis of Disease Incidence and Carrier Estimation Algorithm (BOADICEA). Women, were categorized into three surveillance groups. The surveillance advice was reclassified in 37.9 % of heterozygotes and 32.2 % of non-carriers after adding PRS311. Including questionnaire-based risk factors resulted in an additional change in 20.0 % of heterozygotes and 13.2 % of non-carriers; and a subanalysis showed that adding breast density on top shifted another 17.9 % of heterozygotes and 33.3 % of non-carriers. Overall, the majority of heterozygotes were reclassified to a less intensive surveillance, while non-carriers would require intensified surveillance. The addition of PRS311, questionnaire-based risk factors and breast density to family history resulted in a more personalized BC surveillance advice in CHEK2-families, which may lead to more efficient use of surveillance.


Subject(s)
Breast Neoplasms , Humans , Female , Breast Neoplasms/genetics , Breast Neoplasms/epidemiology , Breast Density , Genetic Risk Score , Genetic Predisposition to Disease , Checkpoint Kinase 2/genetics , Risk Factors , Life Style , Germ Cells
4.
Cancers (Basel) ; 15(13)2023 Jun 23.
Article in English | MEDLINE | ID: mdl-37444426

ABSTRACT

FANCM germline protein truncating variants (PTVs) are moderate-risk factors for ER-negative breast cancer. We previously described the spectrum of FANCM PTVs in 114 European breast cancer cases. In the present, larger cohort, we report the spectrum and frequency of four common and 62 rare FANCM PTVs found in 274 carriers detected among 44,803 breast cancer cases. We confirmed that p.Gln1701* was the most common PTV in Northern Europe with lower frequencies in Southern Europe. In contrast, p.Gly1906Alafs*12 was the most common PTV in Southern Europe with decreasing frequencies in Central and Northern Europe. We verified that p.Arg658* was prevalent in Central Europe and had highest frequencies in Eastern Europe. We also confirmed that the fourth most common PTV, p.Gln498Thrfs*7, might be a founder variant from Lithuania. Based on the frequency distribution of the carriers of rare PTVs, we showed that the FANCM PTVs spectra in Southwestern and Central Europe were much more heterogeneous than those from Northeastern Europe. These findings will inform the development of more efficient FANCM genetic testing strategies for breast cancer cases from specific European populations.

5.
Breast Cancer Res ; 25(1): 53, 2023 05 09.
Article in English | MEDLINE | ID: mdl-37161532

ABSTRACT

BACKGROUND: CHEK2 c.1100delC was the first moderate-risk breast cancer (BC) susceptibility allele discovered. Despite several genomic, transcriptomic and functional studies, however, it is still unclear how exactly CHEK2 c.1100delC promotes tumorigenesis. Since the mutational landscape of a tumor reflects the processes that have operated on its development, the aim of this study was to uncover the somatic genomic landscape of CHEK2-associated BC. METHODS: We sequenced primary BC (pBC) and normal genomes of 20 CHEK2 c.1100delC mutation carriers as well as their pBC transcriptomes. Including pre-existing cohorts, we exhaustively compared CHEK2 pBC genomes to those from BRCA1/2 mutation carriers, those that displayed homologous recombination deficiency (HRD) and ER- and ER+ pBCs, totaling to 574 pBC genomes. Findings were validated in 517 metastatic BC genomes subdivided into the same subgroups. Transcriptome data from 168 ER+ pBCs were used to derive a TP53-mutant gene expression signature and perform cluster analysis with CHEK2 BC transcriptomes. Finally, clinical outcome of CHEK2 c.1100delC carriers was compared with BC patients displaying somatic TP53 mutations in two well-described retrospective cohorts totaling to 942 independent pBC cases. RESULTS: BC genomes from CHEK2 mutation carriers were most similar to ER+ BC genomes and least similar to those of BRCA1/2 mutation carriers in terms of tumor mutational burden as well as mutational signatures. Moreover, CHEK2 BC genomes did not show any evidence of HRD. Somatic TP53 mutation frequency and the size distribution of structural variants (SVs), however, were different compared to ER+ BC. Interestingly, BC genomes with bi-allelic CHEK2 inactivation lacked somatic TP53 mutations and transcriptomic analysis indicated a shared biology with TP53 mutant BC. Moreover, CHEK2 BC genomes had an increased frequency of > 1 Mb deletions, inversions and tandem duplications with peaks at specific sizes. The high chromothripsis frequency among CHEK2 BC genomes appeared, however, not associated with this unique SV size distribution profile. CONCLUSIONS: CHEK2 BC genomes are most similar to ER+ BC genomes, but display unique features that may further unravel CHEK2-driven tumorigenesis. Increased insight into this mechanism could explain the shorter survival of CHEK2 mutation carriers that is likely driven by intrinsic tumor aggressiveness rather than endocrine resistance.


Subject(s)
Breast Neoplasms , Humans , Female , Breast Neoplasms/genetics , BRCA1 Protein , Retrospective Studies , BRCA2 Protein , Carcinogenesis , Cell Transformation, Neoplastic , Tumor Suppressor Protein p53/genetics , Checkpoint Kinase 2/genetics
6.
J Med Genet ; 60(4): 327-336, 2023 04.
Article in English | MEDLINE | ID: mdl-36137616

ABSTRACT

BACKGROUND: Common low-risk variants are presently not used to guide clinical management of familial breast cancer (BC). We explored the additive impact of a 313-variant-based Polygenic Risk Score (PRS313) relative to standard gene testing in non-BRCA1/2 Dutch BC families. METHODS: We included 3918 BC cases from 3492 Dutch non-BRCA1/2 BC families and 3474 Dutch population controls. The association of the standardised PRS313 with BC was estimated using a logistic regression model, adjusted for pedigree-based family history. Family history of the controls was imputed for this analysis. SEs were corrected to account for relatedness of individuals. Using the BOADICEA (Breast and Ovarian Analysis of Disease Incidence and Carrier Estimation Algorithm) V.5 model, lifetime risks were retrospectively calculated with and without individual PRS313. For 2586 cases and 2584 controls, the carrier status of pathogenic variants (PVs) in ATM, CHEK2 and PALB2 was known. RESULTS: The family history-adjusted PRS313 was significantly associated with BC (per SD OR=1.97, 95% CI 1.84 to 2.11). Including the PRS313 in BOADICEA family-based risk prediction would have changed screening recommendations in up to 27%, 36% and 34% of cases according to BC screening guidelines from the USA, UK and the Netherlands (National Comprehensive Cancer Network, National Institute for Health and Care Excellence, and Netherlands Comprehensive Cancer Organisation), respectively. For the population controls, without information on family history, this was up to 39%, 44% and 58%, respectively. Among carriers of PVs in known moderate BC susceptibility genes, the PRS313 had the largest impact for CHEK2 and ATM. CONCLUSIONS: Our results support the application of the PRS313 in risk prediction for genetically uninformative BC families and families with a PV in moderate BC risk genes.


Subject(s)
Breast Neoplasms , Humans , Female , Breast Neoplasms/diagnosis , Breast Neoplasms/epidemiology , Breast Neoplasms/genetics , Genetic Predisposition to Disease , Retrospective Studies , Risk Assessment/methods , Risk Factors
7.
Cancers (Basel) ; 14(14)2022 Jul 11.
Article in English | MEDLINE | ID: mdl-35884425

ABSTRACT

Rare variants in at least 10 genes, including BRCA1, BRCA2, PALB2, ATM, and CHEK2, are associated with increased risk of breast cancer; however, these variants, in combination with common variants identified through genome-wide association studies, explain only a fraction of the familial aggregation of the disease. To identify further susceptibility genes, we performed a two-stage whole-exome sequencing study. In the discovery stage, samples from 1528 breast cancer cases enriched for breast cancer susceptibility and 3733 geographically matched unaffected controls were sequenced. Using five different filtering and gene prioritization strategies, 198 genes were selected for further validation. These genes, and a panel of 32 known or suspected breast cancer susceptibility genes, were assessed in a validation set of 6211 cases and 6019 controls for their association with risk of breast cancer overall, and by estrogen receptor (ER) disease subtypes, using gene burden tests applied to loss-of-function and rare missense variants. Twenty genes showed nominal evidence of association (p-value < 0.05) with either overall or subtype-specific breast cancer. Our study had the statistical power to detect susceptibility genes with effect sizes similar to ATM, CHEK2, and PALB2, however, it was underpowered to identify genes in which susceptibility variants are rarer or confer smaller effect sizes. Larger sample sizes would be required in order to identify such genes.

8.
Genome Med ; 14(1): 51, 2022 05 18.
Article in English | MEDLINE | ID: mdl-35585550

ABSTRACT

BACKGROUND: Protein truncating variants in ATM, BRCA1, BRCA2, CHEK2, and PALB2 are associated with increased breast cancer risk, but risks associated with missense variants in these genes are uncertain. METHODS: We analyzed data on 59,639 breast cancer cases and 53,165 controls from studies participating in the Breast Cancer Association Consortium BRIDGES project. We sampled training (80%) and validation (20%) sets to analyze rare missense variants in ATM (1146 training variants), BRCA1 (644), BRCA2 (1425), CHEK2 (325), and PALB2 (472). We evaluated breast cancer risks according to five in silico prediction-of-deleteriousness algorithms, functional protein domain, and frequency, using logistic regression models and also mixture models in which a subset of variants was assumed to be risk-associated. RESULTS: The most predictive in silico algorithms were Helix (BRCA1, BRCA2 and CHEK2) and CADD (ATM). Increased risks appeared restricted to functional protein domains for ATM (FAT and PIK domains) and BRCA1 (RING and BRCT domains). For ATM, BRCA1, and BRCA2, data were compatible with small subsets (approximately 7%, 2%, and 0.6%, respectively) of rare missense variants giving similar risk to those of protein truncating variants in the same gene. For CHEK2, data were more consistent with a large fraction (approximately 60%) of rare missense variants giving a lower risk (OR 1.75, 95% CI (1.47-2.08)) than CHEK2 protein truncating variants. There was little evidence for an association with risk for missense variants in PALB2. The best fitting models were well calibrated in the validation set. CONCLUSIONS: These results will inform risk prediction models and the selection of candidate variants for functional assays and could contribute to the clinical reporting of gene panel testing for breast cancer susceptibility.


Subject(s)
Breast Neoplasms , Breast Neoplasms/genetics , Case-Control Studies , Female , Genetic Predisposition to Disease , Humans , Mutation, Missense
10.
Crit Rev Oncol Hematol ; 176: 103642, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35257886

ABSTRACT

Current methods of next generation sequencing may simultaneously detect multiple germline breast cancer susceptibility variants. However, it is a challenge to maximize the clinical benefit of genetic analysis for patients and family members while minimizing potentially harmful effects. Relevant issues include criteria for referral, the choice of gene panel, handling of variants of unknown significance, cancer risk counselling in clinical context including family history data, risks of tumours other than breast cancer, handling of potential germline findings revealed by tumour testing and the clinical management of gene variant carriers, including surveillance, targeted therapy, radiotherapy and risk-reducing surgery. We outline current challenges in the field of breast cancer genetics and call for novel forms of multidisciplinary care and long-term evaluation.


Subject(s)
Breast Neoplasms , Breast Neoplasms/diagnosis , Breast Neoplasms/genetics , Breast Neoplasms/therapy , Female , Genetic Predisposition to Disease , Genetic Testing/methods , Germ-Line Mutation , High-Throughput Nucleotide Sequencing , Humans
11.
Eur J Hum Genet ; 30(3): 349-362, 2022 03.
Article in English | MEDLINE | ID: mdl-35027648

ABSTRACT

Polygenic risk scores (PRS) for epithelial ovarian cancer (EOC) have the potential to improve risk stratification. Joint estimation of Single Nucleotide Polymorphism (SNP) effects in models could improve predictive performance over standard approaches of PRS construction. Here, we implemented computationally efficient, penalized, logistic regression models (lasso, elastic net, stepwise) to individual level genotype data and a Bayesian framework with continuous shrinkage, "select and shrink for summary statistics" (S4), to summary level data for epithelial non-mucinous ovarian cancer risk prediction. We developed the models in a dataset consisting of 23,564 non-mucinous EOC cases and 40,138 controls participating in the Ovarian Cancer Association Consortium (OCAC) and validated the best models in three populations of different ancestries: prospective data from 198,101 women of European ancestries; 7,669 women of East Asian ancestries; 1,072 women of African ancestries, and in 18,915 BRCA1 and 12,337 BRCA2 pathogenic variant carriers of European ancestries. In the external validation data, the model with the strongest association for non-mucinous EOC risk derived from the OCAC model development data was the S4 model (27,240 SNPs) with odds ratios (OR) of 1.38 (95% CI: 1.28-1.48, AUC: 0.588) per unit standard deviation, in women of European ancestries; 1.14 (95% CI: 1.08-1.19, AUC: 0.538) in women of East Asian ancestries; 1.38 (95% CI: 1.21-1.58, AUC: 0.593) in women of African ancestries; hazard ratios of 1.36 (95% CI: 1.29-1.43, AUC: 0.592) in BRCA1 pathogenic variant carriers and 1.49 (95% CI: 1.35-1.64, AUC: 0.624) in BRCA2 pathogenic variant carriers. Incorporation of the S4 PRS in risk prediction models for ovarian cancer may have clinical utility in ovarian cancer prevention programs.


Subject(s)
Breast Neoplasms , Ovarian Neoplasms , Bayes Theorem , Carcinoma, Ovarian Epithelial/genetics , Female , Genetic Predisposition to Disease , Humans , Male , Ovarian Neoplasms/epidemiology , Ovarian Neoplasms/genetics , Polymorphism, Single Nucleotide , Prospective Studies , Risk Factors
12.
Breast ; 61: 98-107, 2022 Feb.
Article in English | MEDLINE | ID: mdl-34929424

ABSTRACT

AIM: BRCA1/2 mutation carriers with primary breast cancer (PBC) are at high risk of contralateral breast cancer (CBC). In a nationwide cohort, we investigated the effects of chemotherapeutic agents given for PBC on CBC risk separately in BRCA1 and BRCA2 mutation carriers. PATIENTS AND METHODS: BRCA1 or BRCA2 mutation carriers with an invasive PBC diagnosis from 1990 to 2017 were selected from a Dutch cohort. We estimated cumulative CBC incidence using competing risks analysis. Hazard ratios (HR) for the effect of neo-adjuvant or adjuvant chemotherapy and different chemotherapeutic agents on CBC risk were estimated using Cox regression. RESULTS: We included 1090 BRCA1 and 568 BRCA2 mutation carriers; median follow-up was 8.9 and 8.4 years, respectively. Ten-year cumulative CBC incidence for treatment with and without chemotherapy was 6.7% [95%CI: 5.1-8.6] and 16.7% [95%CI: 10.8-23.7] in BRCA1 and 4.8% [95%CI: 2.7-7.8] and 16.0% [95%CI: 9.3-24.4] in BRCA2 mutation carriers, respectively. Chemotherapy was associated with reduced CBC risk in BRCA1 (multivariable HR: 0.46, 95%CI: 0.29-0.74); a similar trend was observed in BRCA2 mutation carriers (HR: 0.63, 95%CI: 0.29-1.39). In BRCA1, risk reduction was most pronounced in the first 5 years (HR: 0.32, 95%CI: 0.17-0.61). Anthracyclines and the combination of anthracyclines with taxanes were associated with substantial CBC risk reduction in BRCA1 carriers (HR: 0.34, 95%CI: 0.17-0.68 and HR: 0.22, 95%CI: 0.08-0.62, respectively). CONCLUSION: Risk-reducing effects of chemotherapy are substantial for at least 5 years and may be used in personalised CBC risk prediction in any case for BRCA1 mutation carriers.


Subject(s)
Breast Neoplasms , BRCA1 Protein/genetics , BRCA2 Protein/genetics , Breast Neoplasms/drug therapy , Breast Neoplasms/genetics , Chemotherapy, Adjuvant , Cohort Studies , Female , Genetic Predisposition to Disease , Heterozygote , Humans , Mutation , Risk Factors
13.
NPJ Breast Cancer ; 7(1): 52, 2021 May 12.
Article in English | MEDLINE | ID: mdl-33980861

ABSTRACT

Bi-allelic loss-of-function (LoF) variants in the base excision repair (BER) gene NTHL1 cause a high-risk hereditary multi-tumor syndrome that includes breast cancer, but the contribution of heterozygous variants to hereditary breast cancer is unknown. An analysis of 4985 women with breast cancer, enriched for familial features, and 4786 cancer-free women revealed significant enrichment for NTHL1 LoF variants. Immunohistochemistry confirmed reduced NTHL1 expression in tumors from heterozygous carriers but the NTHL1 bi-allelic loss characteristic mutational signature (SBS 30) was not present. The analysis was extended to 27,421 breast cancer cases and 19,759 controls from 10 international studies revealing 138 cases and 93 controls with a heterozygous LoF variant (OR 1.06, 95% CI: 0.82-1.39) and 316 cases and 179 controls with a missense variant (OR 1.31, 95% CI: 1.09-1.57). Missense variants selected for deleterious features by a number of in silico bioinformatic prediction tools or located within the endonuclease III functional domain showed a stronger association with breast cancer. Somatic sequencing of breast cancers from carriers indicated that the risk associated with NTHL1 appears to operate through haploinsufficiency, consistent with other described low-penetrance breast cancer genes. Data from this very large international multicenter study suggests that heterozygous pathogenic germline coding variants in NTHL1 may be associated with low- to moderate- increased risk of breast cancer.

15.
Nat Commun ; 12(1): 1078, 2021 02 17.
Article in English | MEDLINE | ID: mdl-33597508

ABSTRACT

Breast cancer (BC) risk for BRCA1 and BRCA2 mutation carriers varies by genetic and familial factors. About 50 common variants have been shown to modify BC risk for mutation carriers. All but three, were identified in general population studies. Other mutation carrier-specific susceptibility variants may exist but studies of mutation carriers have so far been underpowered. We conduct a novel case-only genome-wide association study comparing genotype frequencies between 60,212 general population BC cases and 13,007 cases with BRCA1 or BRCA2 mutations. We identify robust novel associations for 2 variants with BC for BRCA1 and 3 for BRCA2 mutation carriers, P < 10-8, at 5 loci, which are not associated with risk in the general population. They include rs60882887 at 11p11.2 where MADD, SP11 and EIF1, genes previously implicated in BC biology, are predicted as potential targets. These findings will contribute towards customising BC polygenic risk scores for BRCA1 and BRCA2 mutation carriers.


Subject(s)
BRCA1 Protein/genetics , BRCA2 Protein/genetics , Breast Neoplasms/genetics , Genetic Predisposition to Disease/genetics , Genome-Wide Association Study/methods , Polymorphism, Single Nucleotide , Adult , Alleles , Female , Genotype , Humans , Linkage Disequilibrium , Middle Aged , Mutation , Quantitative Trait Loci/genetics , Risk Factors
16.
Breast Cancer Res Treat ; 181(2): 423-434, 2020 Jun.
Article in English | MEDLINE | ID: mdl-32279280

ABSTRACT

BACKGROUND: Three tools are currently available to predict the risk of contralateral breast cancer (CBC). We aimed to compare the performance of the Manchester formula, CBCrisk, and PredictCBC in patients with invasive breast cancer (BC). METHODS: We analyzed data of 132,756 patients (4682 CBC) from 20 international studies with a median follow-up of 8.8 years. Prediction performance included discrimination, quantified as a time-dependent Area-Under-the-Curve (AUC) at 5 and 10 years after diagnosis of primary BC, and calibration, quantified as the expected-observed (E/O) ratio at 5 and 10 years and the calibration slope. RESULTS: The AUC at 10 years was: 0.58 (95% confidence intervals [CI] 0.57-0.59) for CBCrisk; 0.60 (95% CI 0.59-0.61) for the Manchester formula; 0.63 (95% CI 0.59-0.66) and 0.59 (95% CI 0.56-0.62) for PredictCBC-1A (for settings where BRCA1/2 mutation status is available) and PredictCBC-1B (for the general population), respectively. The E/O at 10 years: 0.82 (95% CI 0.51-1.32) for CBCrisk; 1.53 (95% CI 0.63-3.73) for the Manchester formula; 1.28 (95% CI 0.63-2.58) for PredictCBC-1A and 1.35 (95% CI 0.65-2.77) for PredictCBC-1B. The calibration slope was 1.26 (95% CI 1.01-1.50) for CBCrisk; 0.90 (95% CI 0.79-1.02) for PredictCBC-1A; 0.81 (95% CI 0.63-0.99) for PredictCBC-1B, and 0.39 (95% CI 0.34-0.43) for the Manchester formula. CONCLUSIONS: Current CBC risk prediction tools provide only moderate discrimination and the Manchester formula was poorly calibrated. Better predictors and re-calibration are needed to improve CBC prediction and to identify low- and high-CBC risk patients for clinical decision-making.


Subject(s)
Breast Neoplasms/pathology , Clinical Decision-Making , Neoplasms, Second Primary/pathology , Risk Assessment/methods , Adult , Breast Neoplasms/metabolism , Breast Neoplasms/surgery , Cohort Studies , Female , Follow-Up Studies , Humans , International Agencies , Mastectomy , Neoplasms, Second Primary/metabolism , Neoplasms, Second Primary/surgery , Prognosis , Receptor, ErbB-2/metabolism , Receptors, Estrogen/metabolism , Risk Factors
17.
J Clin Oncol ; 38(7): 674-685, 2020 03 01.
Article in English | MEDLINE | ID: mdl-31841383

ABSTRACT

PURPOSE: To estimate age-specific relative and absolute cancer risks of breast cancer and to estimate risks of ovarian, pancreatic, male breast, prostate, and colorectal cancers associated with germline PALB2 pathogenic variants (PVs) because these risks have not been extensively characterized. METHODS: We analyzed data from 524 families with PALB2 PVs from 21 countries. Complex segregation analysis was used to estimate relative risks (RRs; relative to country-specific population incidences) and absolute risks of cancers. The models allowed for residual familial aggregation of breast and ovarian cancer and were adjusted for the family-specific ascertainment schemes. RESULTS: We found associations between PALB2 PVs and risk of female breast cancer (RR, 7.18; 95% CI, 5.82 to 8.85; P = 6.5 × 10-76), ovarian cancer (RR, 2.91; 95% CI, 1.40 to 6.04; P = 4.1 × 10-3), pancreatic cancer (RR, 2.37; 95% CI, 1.24 to 4.50; P = 8.7 × 10-3), and male breast cancer (RR, 7.34; 95% CI, 1.28 to 42.18; P = 2.6 × 10-2). There was no evidence for increased risks of prostate or colorectal cancer. The breast cancer RRs declined with age (P for trend = 2.0 × 10-3). After adjusting for family ascertainment, breast cancer risk estimates on the basis of multiple case families were similar to the estimates from families ascertained through population-based studies (P for difference = .41). On the basis of the combined data, the estimated risks to age 80 years were 53% (95% CI, 44% to 63%) for female breast cancer, 5% (95% CI, 2% to 10%) for ovarian cancer, 2%-3% (95% CI females, 1% to 4%; 95% CI males, 2% to 5%) for pancreatic cancer, and 1% (95% CI, 0.2% to 5%) for male breast cancer. CONCLUSION: These results confirm PALB2 as a major breast cancer susceptibility gene and establish substantial associations between germline PALB2 PVs and ovarian, pancreatic, and male breast cancers. These findings will facilitate incorporation of PALB2 into risk prediction models and optimize the clinical cancer risk management of PALB2 PV carriers.


Subject(s)
Fanconi Anemia Complementation Group N Protein/genetics , Neoplasms/genetics , Adult , Age Factors , Aged , Aged, 80 and over , Breast Neoplasms, Male/genetics , Female , Genetic Predisposition to Disease , Germ-Line Mutation , Humans , Internationality , Male , Middle Aged , Ovarian Neoplasms/genetics , Pancreatic Neoplasms/genetics , Risk
18.
Breast Cancer Res ; 21(1): 144, 2019 12 17.
Article in English | MEDLINE | ID: mdl-31847907

ABSTRACT

BACKGROUND: Breast cancer survivors are at risk for contralateral breast cancer (CBC), with the consequent burden of further treatment and potentially less favorable prognosis. We aimed to develop and validate a CBC risk prediction model and evaluate its applicability for clinical decision-making. METHODS: We included data of 132,756 invasive non-metastatic breast cancer patients from 20 studies with 4682 CBC events and a median follow-up of 8.8 years. We developed a multivariable Fine and Gray prediction model (PredictCBC-1A) including patient, primary tumor, and treatment characteristics and BRCA1/2 germline mutation status, accounting for the competing risks of death and distant metastasis. We also developed a model without BRCA1/2 mutation status (PredictCBC-1B) since this information was available for only 6% of patients and is routinely unavailable in the general breast cancer population. Prediction performance was evaluated using calibration and discrimination, calculated by a time-dependent area under the curve (AUC) at 5 and 10 years after diagnosis of primary breast cancer, and an internal-external cross-validation procedure. Decision curve analysis was performed to evaluate the net benefit of the model to quantify clinical utility. RESULTS: In the multivariable model, BRCA1/2 germline mutation status, family history, and systemic adjuvant treatment showed the strongest associations with CBC risk. The AUC of PredictCBC-1A was 0.63 (95% prediction interval (PI) at 5 years, 0.52-0.74; at 10 years, 0.53-0.72). Calibration-in-the-large was -0.13 (95% PI: -1.62-1.37), and the calibration slope was 0.90 (95% PI: 0.73-1.08). The AUC of Predict-1B at 10 years was 0.59 (95% PI: 0.52-0.66); calibration was slightly lower. Decision curve analysis for preventive contralateral mastectomy showed potential clinical utility of PredictCBC-1A between thresholds of 4-10% 10-year CBC risk for BRCA1/2 mutation carriers and non-carriers. CONCLUSIONS: We developed a reasonably calibrated model to predict the risk of CBC in women of European-descent; however, prediction accuracy was moderate. Our model shows potential for improved risk counseling, but decision-making regarding contralateral preventive mastectomy, especially in the general breast cancer population where limited information of the mutation status in BRCA1/2 is available, remains challenging.


Subject(s)
Breast Neoplasms/epidemiology , Breast Neoplasms/etiology , Neoplasms, Second Primary/epidemiology , Neoplasms, Second Primary/etiology , Area Under Curve , BRCA1 Protein/genetics , BRCA2 Protein/genetics , Breast Neoplasms/pathology , Breast Neoplasms/therapy , Clinical Decision-Making , Disease Management , Disease Susceptibility , Female , Germ-Line Mutation , Humans , Neoplasms, Second Primary/pathology , Neoplasms, Second Primary/prevention & control , Netherlands/epidemiology , Prognosis , Proportional Hazards Models , Risk Assessment , Risk Factors
19.
NPJ Breast Cancer ; 5: 38, 2019.
Article in English | MEDLINE | ID: mdl-31700994

ABSTRACT

Breast cancer is a common disease partially caused by genetic risk factors. Germline pathogenic variants in DNA repair genes BRCA1, BRCA2, PALB2, ATM, and CHEK2 are associated with breast cancer risk. FANCM, which encodes for a DNA translocase, has been proposed as a breast cancer predisposition gene, with greater effects for the ER-negative and triple-negative breast cancer (TNBC) subtypes. We tested the three recurrent protein-truncating variants FANCM:p.Arg658*, p.Gln1701*, and p.Arg1931* for association with breast cancer risk in 67,112 cases, 53,766 controls, and 26,662 carriers of pathogenic variants of BRCA1 or BRCA2. These three variants were also studied functionally by measuring survival and chromosome fragility in FANCM -/- patient-derived immortalized fibroblasts treated with diepoxybutane or olaparib. We observed that FANCM:p.Arg658* was associated with increased risk of ER-negative disease and TNBC (OR = 2.44, P = 0.034 and OR = 3.79; P = 0.009, respectively). In a country-restricted analysis, we confirmed the associations detected for FANCM:p.Arg658* and found that also FANCM:p.Arg1931* was associated with ER-negative breast cancer risk (OR = 1.96; P = 0.006). The functional results indicated that all three variants were deleterious affecting cell survival and chromosome stability with FANCM:p.Arg658* causing more severe phenotypes. In conclusion, we confirmed that the two rare FANCM deleterious variants p.Arg658* and p.Arg1931* are risk factors for ER-negative and TNBC subtypes. Overall our data suggest that the effect of truncating variants on breast cancer risk may depend on their position in the gene. Cell sensitivity to olaparib exposure, identifies a possible therapeutic option to treat FANCM-associated tumors.

20.
Br J Cancer ; 121(2): 180-192, 2019 07.
Article in English | MEDLINE | ID: mdl-31213659

ABSTRACT

BACKGROUND: Height and body mass index (BMI) are associated with higher ovarian cancer risk in the general population, but whether such associations exist among BRCA1/2 mutation carriers is unknown. METHODS: We applied a Mendelian randomisation approach to examine height/BMI with ovarian cancer risk using the Consortium of Investigators for the Modifiers of BRCA1/2 (CIMBA) data set, comprising 14,676 BRCA1 and 7912 BRCA2 mutation carriers, with 2923 ovarian cancer cases. We created a height genetic score (height-GS) using 586 height-associated variants and a BMI genetic score (BMI-GS) using 93 BMI-associated variants. Associations were assessed using weighted Cox models. RESULTS: Observed height was not associated with ovarian cancer risk (hazard ratio [HR]: 1.07 per 10-cm increase in height, 95% confidence interval [CI]: 0.94-1.23). Height-GS showed similar results (HR = 1.02, 95% CI: 0.85-1.23). Higher BMI was significantly associated with increased risk in premenopausal women with HR = 1.25 (95% CI: 1.06-1.48) and HR = 1.59 (95% CI: 1.08-2.33) per 5-kg/m2 increase in observed and genetically determined BMI, respectively. No association was found for postmenopausal women. Interaction between menopausal status and BMI was significant (Pinteraction < 0.05). CONCLUSION: Our observation of a positive association between BMI and ovarian cancer risk in premenopausal BRCA1/2 mutation carriers is consistent with findings in the general population.


Subject(s)
Body Height , Body Mass Index , Genes, BRCA1 , Genes, BRCA2 , Heterozygote , Mendelian Randomization Analysis , Mutation , Ovarian Neoplasms/etiology , Adult , Aged , Female , Humans , Menopause , Middle Aged , Ovarian Neoplasms/genetics , Proportional Hazards Models
SELECTION OF CITATIONS
SEARCH DETAIL
...