Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 107
Filter
Add more filters










Publication year range
1.
Food Chem ; 455: 139869, 2024 May 27.
Article in English | MEDLINE | ID: mdl-38850977

ABSTRACT

Although citric acid (CA) has antioxidant, antibacterial, and acidulating properties, chronic ingestion of CA can cause urolithiasis, hypocalcemia, and duodenal cancer, emphasizing the need for early detection. There are very few documented electrochemical-based sensing methods for CA detection due to the challenging behavior of electrode fouling caused by reactive oxidation products. In this study, a novel, non-enzymatic, and economical electrochemical sensor based on cobalt oxide nanoparticles (CoOxNPs) is successfully reported for detection CA. The CoOxNPs were synthesized through a simple thermal decomposition method and characterized by SEM, FT-IR, EDX, and XRD techniques. The proposed sensing platform was optimized by various parameters, including pH (7.0), time (15 min), and concentration of nanoparticles (100 mM) etc. In a linear range of 0.05-2500 µM, a low detection limit (LOD) of 0.13 µM was achieved. Theoretical calculations (ΔRT), confirmed hydrogen bonding and electrostatic interactions between CoOxNPs and CA. The detection method exhibited high selectivity in real media like food and biological samples, with good recovery values when compared favorably to the HPLC method. To facilitate effective on-site investigation, such a sensing platform can be assembled into a portable device.

2.
Phys Chem Chem Phys ; 26(20): 14970-14979, 2024 May 22.
Article in English | MEDLINE | ID: mdl-38739372

ABSTRACT

Curcumin is a medicinal agent that exhibits anti-cancer and anti-Alzheimer's disease properties. It has a keto-enol moiety that gives rise to many of its chemical properties including metal complexation and acid-base equilibria. A previous study has shown that keto-enol tautomerization at this moiety is implicated in the anti-Alzheimer's disease effect of curcumin, highlighting the importance of this process. In this study, tautomerization of curcumin in methanol, acetone and acetonitrile was investigated using time-resolved 1H nuclear magnetic resonance spectroscopy. Curcumin undergoes hydrogen-deuterium exchange with the solvents and the proton resonance peak corresponding to the hydrogen at the α-carbon position (Cα) decays as a function of time, signifying deuteration at this position. Because tautomerization is the rate limiting step in the deuteration of curcumin at the Cα position, the rate of tautomerization is inferred from the rate of deuteration. The rate constant of tautomerization of curcumin shows a temperature dependence and analysis using the Arrhenius equation revealed activation energies (Ea) of tautomerization of (80.1 ± 5.9), (64.1 ± 1.0) and (68.3 ± 5.5) kJ mol-1 in methanol, D2O/acetone and D2O/acetonitrile, respectively. Insight into the role of water in tautomerization of curcumin was further offered by density functional theory studies. The transition state of tautomerization was optimized in the presence of water molecules. The results show a hydrogen-bonded solvent bridge between the diketo moiety and Cα of curcumin. The Ea of tautomerization of curcumin shows a strong dependence on the number of water molecules in the solvent bridge, indicating the critical role played by the solvent bridge in catalyzing tautomerization of curcumin.


Subject(s)
Curcumin , Curcumin/chemistry , Methanol/chemistry , Acetonitriles/chemistry , Acetone/chemistry , Isomerism , Thermodynamics , Solvents/chemistry
3.
Mater Horiz ; 2024 May 24.
Article in English | MEDLINE | ID: mdl-38787745

ABSTRACT

The charge-trapping mechanism in conjugated polymers is a performance obstacle in many optoelectronic devices harnessed for non-volatile memory applications. Herein, a carbonyl-decorated organic 2D-polymer (TpDb)-based charge-trapping memory device has been developed with a wide memory window (3.2 V) with low programming and erasing voltages of +3/-2 and -3/+2. The TpDb was synthesized by a potentially scalable solid-state aldol condensation reaction. The inherent structural defects and the semi-conjugated nature of the enone network in TpDb offer effective charge-trapping through the localization of charges in specific functional groups (CO). The interlayer hydrogen bonding enhances the packing density of the 2D-polymer layers thereby improving the memory storage properties of the material. Furthermore, the TpDb exhibits excellent features for non-volatile memory applications including over 10 000 cycles of write/read endurance and a prolonged retention performance of 104 seconds at high temperatures (100 °C).

4.
ACS Appl Mater Interfaces ; 16(15): 19877-19883, 2024 Apr 17.
Article in English | MEDLINE | ID: mdl-38570930

ABSTRACT

Anthracene- and pyrene-based twisted porous graphene (AN-Pyre-PG) with an ordered pore structure has been synthesized through bottom-up solution phase synthesis from a conjugated microporous polymer (AN-Pyre-CMP) via a heterogeneous Scholl cyclization reaction. The regular-ordered pores embedded within the graphene structures were analyzed through a Raman spectrum, different morphological analyses, and theoretical studies. A significant change in surface area from AN-Pyre-CMP to AN-Pyre-PG was observed, from 143 to 640 m2/g, respectively. Surface area-driven capacitive properties were also observed. Twisted-structure and ordered porous graphene shows better specific capacitance compared to CMP. AN-Pyre-PG shows a specific capacitance of 629 F g-1 at 1 A g-1, with 91% retention of capacitance after 3000 charge-discharge cycles, whereas AN-Pyre-CMP shows a maximum specific capacitance of 200 F g-1 was observed at 2 A g-1.

5.
Angew Chem Int Ed Engl ; 63(16): e202400009, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38415815

ABSTRACT

Covalent organic frameworks are a novel class of crystalline porous polymers that enable molecular design of extended polygonal skeletons to attain well-defined porous structures. However, construction of a framework that allows remote control of pores remains a challenge. Here we report a strategy that merges covalent, noncovalent, and photo chemistries to design photoresponsive frameworks with reversibly and remotely controllable pores. We developed a topology-guided multicomponent polycondensation system that integrates protruded tetrafluoroazobenzene units as photoresponsive sites on pore walls at predesigned densities, so that a series of crystalline porous frameworks with the same backbone can be constructed to develop a broad spectrum of pores ranging from mesopores to micropores. Distinct from conventional azobenzene-based systems, the tetrafluoroazobenzene frameworks are highly sensitive to visible lights to undergo high-rate isomerization. The photoisomerization exerts profound effects on pore size, shape, number, and environment, as well as molecular uptake and release, rendering the system able to convert and switch pores reversibly and remotely with visible lights. Our results open a way to a novel class of smart porous materials with pore structures and functions that are convertible and manageable with visible lights.

6.
Angew Chem Int Ed Engl ; 63(13): e202316873, 2024 Mar 22.
Article in English | MEDLINE | ID: mdl-38324467

ABSTRACT

ß-Keto-enamine-linked 2D covalent organic frameworks (COFs) have emerged as highly robust materials, showing significant potential for practical applications. However, the exclusive reliance on 1,3,5-triformylphloroglucinol (Tp aldehyde) in the design of such COFs often results in the production of non-porous amorphous polymers when combined with certain amine building blocks. Attempts to adjust the crystallinity and porosity by a modulator approach are inefficient because Tp aldehyde readily forms stable ß-keto-enamine-linked monomers/oligomers with various aromatic amines through an irreversible keto-enol tautomerization process. Our research employed a unique protection-deprotection strategy to enhance the crystallinity and porosity of ß-keto-enamine-linked squaramide-based 2D COFs. Advanced solid-state NMR studies, including 1D 13 C CPMAS, 1 H fast MAS, 15 N CPMAS, 2D 13 C-1 H correlation, 1 H-1 H DQ-SQ, and 14 N-1 H HMQC NMR were used to establish the atomic-level connectivity within the resultant COFs. The TpOMe -Sqm COFs synthesized utilizing this strategy have a surface area of 487 m2 g-1 , significantly higher than similar COFs synthesized using Tp aldehyde. Furthermore, detailed time-dependent PXRD, solid-state 13 C CPMAS NMR, and theoretical DFT studies shed more light on the crystallization and linkage conversion processes in these 2D COFs. Ultimately, we applied this protection-deprotection method to construct novel keto-enamine-linked highly porous organic polymers with a surface area of 1018 m2 g-1 .

7.
Small ; : e2311064, 2024 Feb 23.
Article in English | MEDLINE | ID: mdl-38396219

ABSTRACT

Visual sensing of humidity and temperature by solids plays an important role in the everyday life and in industrial processes. Due to their hydrophobic nature, most covalent organic framework (COF) sensors often exhibit poor optical response when exposed to moisture. To overcome this challenge, the optical response is set out to improve, to moisture by incorporating H-bonding ionic functionalities into the COF network. A highly sensitive COF, consisting of guanidinium and diformylpyridine linkers (TG-DFP), capable of detecting changes in temperature and moisture content is fabricated. The hydrophilic nature of the framework enables enhanced water uptake, allowing the trapped water molecules to form a large number of hydrogen bonds. Despite the presence of non-emissive building blocks, the H-bonds restrict internal bond rotation within the COF, leading to reversible fluorescence and solid-state optical hydrochromism in response to relative humidity and temperature.

8.
Phys Chem Chem Phys ; 26(3): 2218-2227, 2024 Jan 17.
Article in English | MEDLINE | ID: mdl-38165015

ABSTRACT

Density functional theory calculations were performed to identify product, reactant and intermediate dissociative/associative structures for the oxygen abstraction and addition reactions: Rh10On + CO → Rh10On-1 + CO2, n = 1-5 and Rh10On + N2O → Rh10On+1 + N2, n = 0-4 reactions. In the case of the oxygen abstraction reactions, the energetics of the reaction path were very similar in energy regardless of the number of oxygen atoms on the Rh10On cluster, whereas for the addition of oxygen to the Rh10On cluster, the reaction was found to become significantly less exothermic with each successive addition of oxygen.

9.
J Am Chem Soc ; 145(26): 14417-14426, 2023 Jul 05.
Article in English | MEDLINE | ID: mdl-37339431

ABSTRACT

The development of highly luminescent two-dimensional covalent organic frameworks (COFs) for sensing applications remains challenging. To suppress commonly observed photoluminescence quenching of COFs, we propose a strategy involving interrupting the intralayer conjugation and interlayer interactions using cyclohexane as the linker unit. By variation of the building block structures, imine-bonded COFs with various topologies and porosities are obtained. Experimental and theoretical analyses of these COFs disclose high crystallinity and large interlayer distances, demonstrating enhanced emission with record-high photoluminescence quantum yields of up to 57% in the solid state. The resulting cyclohexane-linked COF also exhibits excellent sensing performance for the trace recognition of Fe3+ ions, explosive and toxic picric acid, and phenyl glyoxylic acid as metabolites. These findings inspire a facile and general strategy to develop highly emissive imine-bonded COFs for detecting various molecules.

10.
Chem Sci ; 14(24): 6643-6653, 2023 Jun 21.
Article in English | MEDLINE | ID: mdl-37350839

ABSTRACT

Covalent organic frameworks (COFs) are ideal host matrices for biomolecule immobilization and biocatalysis due to their high porosity, various functionalities, and structural robustness. However, the porosity of COFs is limited to the micropore dimension, which restricts the immobilization of enzymes with large volumes and obstructs substrate flow during enzyme catalysis. A hierarchical 3D nanostructure possessing micro-, meso-, and macroporosity could be a beneficial host matrix for such enzyme catalysis. In this study, we employed an in situ CO2 gas effervescence technique to induce disordered macropores in the ordered 2D COF nanostructure, synthesizing hierarchical TpAzo COF-foam. The resulting TpAzo foam matrix facilitates the immobilization of multiple enzymes with higher immobilization efficiency (approximately 1.5 to 4-fold) than the COF. The immobilized cellulolytic enzymes, namely ß-glucosidase (BGL), cellobiohydrolase (CBH), and endoglucanase (EG), remain active inside the TpAzo foam. The immobilized BGL exhibited activity in organic solvents and stability at room temperature (25 °C). The enzyme-immobilized TpAzo foam exhibited significant activity towards the hydrolysis of p-nitrophenyl-ß-d-glucopyranoside (BGL@TpAzo-foam: Km and Vmax = 23.5 ± 3.5 mM and 497.7 ± 28.0 µM min-1) and carboxymethylcellulose (CBH@TpAzo-foam: Km and Vmax = 18.3 ± 4.0 mg mL-1 and 85.2 ± 9.6 µM min-1 and EG@TpAzo-foam: Km and Vmax = 13.2 ± 2.0 mg mL-1 and 102.2 ± 7.1 µM min-1). Subsequently, the multi-enzyme immobilized TpAzo foams were utilized to perform a one-pot tandem conversion from carboxymethylcellulose (CMC) to glucose with high recyclability (10 cycles). This work opens up the possibility of synthesizing enzymes immobilized in TpAzo foam for tandem catalysis.

11.
Nat Commun ; 14(1): 3765, 2023 Jun 23.
Article in English | MEDLINE | ID: mdl-37353549

ABSTRACT

Controlling the number of molecular switches and their relative positioning within porous materials is critical to their functionality and properties. The proximity of many molecular switches to one another can hinder or completely suppress their response. Herein, a synthetic strategy involving mixed linkers is used to control the distribution of spiropyran-functionalized linkers in a covalent organic framework (COF). The COF contains a spiropyran in each pore which exhibits excellent reversible photoswitching behavior to its merocyanine form in the solid state in response to UV/Vis light. The spiro-COF possesses an urchin-shaped morphology and exhibits a morphological transition to 2D nanosheets and vesicles in solution upon UV light irradiation. The merocyanine-equipped COFs are extremely stable and possess a more ordered structure with enhanced photoluminescence. This approach to modulating structural isomerization in the solid state is used to develop inkless printing media, while the photomediated polarity change is used for water harvesting applications.


Subject(s)
Cockayne Syndrome , Metal-Organic Frameworks , Humans , Nitro Compounds , Porosity
12.
Angew Chem Int Ed Engl ; 62(29): e202304313, 2023 Jul 17.
Article in English | MEDLINE | ID: mdl-37212616

ABSTRACT

Hydrogen-bonded organic frameworks (HOFs) are ordered supramolecular solid structures, however, nothing much explored as centimetre-scale self-standing films. The fabrication of such crystals comprising self-supported films is challenging due to the limited flexibility and interaction of the crystals, and therefore studies on two-dimensional macrostructures of HOFs are limited to external supports. Herein, we introduce a novel chemical gradient strategy to fabricate a crystal-deposited HOF film on an in situ-formed covalent organic polymer film (Tam-Bdca-CGHOF). The fabricated film showed versatility in chemical bonding along its thickness from covalent to hydrogen-bonded network. The kinetic-controlled Tam-Bdca-CGHOF showed enhanced proton conductivity (8.3×10-5  S cm-1 ) compared to its rapid kinetic analogue, Tam-Bdca-COP (2.1×10-5  S cm-1 ), which signifies the advantage of bonding-engineering in the same system.

13.
Langmuir ; 39(11): 4071-4081, 2023 Mar 21.
Article in English | MEDLINE | ID: mdl-36905363

ABSTRACT

Exploring a covalent organic framework (COF) material as an efficient metal-free photocatalyst and as an adsorbent for the removal of pollutants from contaminated water is very challenging in the context of sustainable chemistry. Herein, we report a new porous crystalline COF, C6-TRZ-TPA COF, via segregation of donor-acceptor moieties through the extended Schiff base condensation between tris(4-formylphenyl)amine and 4,4',4″-(1,3,5-triazine-2,4,6-triyl)trianiline. This COF displayed a Brunauer-Emmett-Teller (BET) surface area of 1058 m2 g-1 with a pore volume of 0.73 cc g-1. Again, extended π-conjugation, the presence of heteroatoms throughout the framework, and a narrow band gap of 2.2 eV, all these features collectively work for the environmental remediation in two different perspectives: it could harness solar energy for environmental clean-up, where the COF has been explored as a robust metal-free photocatalyst for wastewater treatment and as an adsorbent for iodine capture. In our endeavor of wastewater treatment, we have conducted the photodegradation of rose bengal (RB) and methylene blue (MB) as model pollutants since these are extremely toxic, are health hazard, and bioaccumulative in nature. The catalyst C6-TRZ-TPA COF showed a very high catalytic efficiency of 99% towards the degradation of 250 parts per million (ppm) of RB solution in 80 min under visible light irradiation with the rate constant of 0.05 min-1. Further, C6-TRZ-TPA COF is found to be an excellent adsorbent as it efficiently adsorbed radioactive iodine from its solution as well as from the vapor phase. The material exhibits a very rapid iodine capturing tendency with an outstanding iodine vapor uptake capacity of 4832 mg g-1.

14.
R Soc Open Sci ; 10(2): 220813, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36778946

ABSTRACT

Porous molecular materials are constructed from molecules that assemble in the solid-state such that there are cavities or an interconnected pore network. It is challenging to control the assembly of these systems, as the interactions between the molecules are generally weak, and subtle changes in the molecular structure can lead to vastly different intermolecular interactions and subsequently different crystal packing arrangements. Similarly, the use of different solvents for crystallization, or the introduction of solvent vapour, can result in different polymorphs and pore networks being formed. It is difficult to uniquely describe the pore networks formed, and thus we analyse 1033 crystal structures of porous molecular systems to determine the underlying topology of their void spaces and potential guest diffusion networks. Material-agnostic topology definitions are applied. We use the underlying topological nets to examine whether it is possible to apply isoreticular design principles to porous molecular materials. Overall, our automatic analysis of a large dataset gives a general insight into the relationships between molecular topologies and the topological nets of their pore network. We show that while porous molecular systems tend to pack similarly to non-porous molecules, the topologies of their pore distributions resemble those of more prominent porous materials, such as metal-organic frameworks and covalent organic frameworks.

15.
ACS Nano ; 17(4): 3492-3505, 2023 Feb 28.
Article in English | MEDLINE | ID: mdl-36753696

ABSTRACT

Designing N-coordinated porous single-atom catalysts (SACs) for the oxygen reduction reaction (ORR) is a promising approach to achieve enhanced energy conversion due to maximized atom utilization and higher activity. Here, we report two Co(II)-porphyrin/ [2,1,3]-benzothiadiazole (BTD)-based covalent organic frameworks (COFs; Co@rhm-PorBTD and Co@sql-PorBTD), which are efficient SAC systems for O2 electrocatalysis (ORR). Experimental results demonstrate that these two COFs outperform the mass activity (at 0.85 V) of commercial Pt/C (20%) by 5.8 times (Co@rhm-PorBTD) and 1.3 times (Co@sql-PorBTD), respectively. The specific activities of Co@rhm-PorBTD and Co@sql-PorBTD were found to be 10 times and 2.5 times larger than that of Pt/C, respectively. These COFs also exhibit larger power density and recycling stability in Zn-air batteries compared with a Pt/C-based air cathode. A theoretical analysis demonstrates that the combination of Co-porphyrin with two different BTD ligands affords two crystalline porous electrocatalysts having different d-band center positions, which leads to reactivity differences toward alkaline ORR. The strategy, design, and electrochemical performance of these two COFs offer a pyrolysis-free bottom-up approach that avoids the creation of random atomic sites, significant metal aggregation, or unpredictable structural features.

16.
J Am Chem Soc ; 145(2): 1072-1082, 2023 01 18.
Article in English | MEDLINE | ID: mdl-36595477

ABSTRACT

The crystal packing of organic chromophores has a profound impact on their photophysical properties. Molecular crystal engineering is generally incapable of producing precisely spaced arrays of molecules for use in photovoltaics, light-emitting diodes, and sensors. A promising alternative strategy is the incorporation of chromophores into crystalline metal-organic frameworks (MOFs), leading to matrix coordination-induced emission (MCIE) upon confinement. However, it remains unclear how the precise arrangement of chromophores and defects dictates photophysical properties in these systems, limiting the rational design of well-defined photoluminescent materials. Herein, we report new, robust Zr-based MOFs constructed from the linker tetrakis(4-carboxyphenyl)ethylene (TCPE4-) that exhibit an unexpected structural transition in combination with a prominent shift from green to blue photoluminescence (PL) as a function of the amount of acid modulator (benzoic, formic, or acetic acid) used during synthesis. Time-resolved PL (TRPL) measurements provide full spectral information and reveal that the observed hypsochromic shift arises due to a higher concentration of linker substitution defects at higher modulator concentrations, leading to broader excitation transfer-induced spectral diffusion. Spectral diffusion of this type has not been reported in a MOF to date, and its observation provides structural information that is otherwise unobtainable using traditional crystallographic techniques. Our findings suggest that defects have a profound impact on the photophysical properties of MOFs and that their presence can be readily tuned to modify energy transfer processes within these materials.


Subject(s)
Metal-Organic Frameworks , Acetic Acid , Benzoic Acid , Crystallography , Diffusion
17.
Macromol Rapid Commun ; 44(11): e2200751, 2023 Jun.
Article in English | MEDLINE | ID: mdl-36413748

ABSTRACT

Emissive covalent organic frameworks (COFs) have recently emerged as next-generation porous materials with attractive properties such as tunable topology, porosity, and inherent photoluminescence. Among the different types of COFs, substoichiometric frameworks (so-called Type III COFs) are especially attractive due to the possibility of not only generating unusual topology and complex pore architectures but also facilitating the introduction of well-defined functional groups at precise locations for desired functions. Herein, the first example of a highly emissive (PLQY 6.8%) substoichiometric 2D-COF (COF-SMU-1) featuring free uncondensed aldehyde groups is reported. In particular, COF-SMU-1 features a dual-pore architecture with an overall bex net topology, tunable emission in various organic solvents, and distinct colorimetric changes in the presence of water. To gain further insights into its photoluminescence properties, the charge transfer, excimer emission, and excited state exciton dynamics of COF-SMU-1 are investigated using femtosecond transient absorption spectroscopy in different organic solvents. Additionally, highly enhanced atmospheric water-harvesting properties of COF-SMU-1 are revealed using FT-IR and water sorption studies.The findings will not only lead to in-depth understanding of structure-property relationships in emissive COFs but also open new opportunities for designing COFs for potential applications in solid-state lighting and water harvesting.


Subject(s)
Metal-Organic Frameworks , Water , Spectroscopy, Fourier Transform Infrared , Aldehydes , Solvents
18.
Chem Mater ; 34(20): 9042-9054, 2022 Oct 25.
Article in English | MEDLINE | ID: mdl-36313398

ABSTRACT

Amorphous metal-organic frameworks (aMOFs) are a class of disordered framework materials with a defined local order given by the connectivity between inorganic nodes and organic linkers, but absent long-range order. The rational development of function for aMOFs is hindered by our limited understanding of the underlying structure-property relationships in these systems, a consequence of the absence of long-range order, which makes experimental characterization particularly challenging. Here, we use a versatile modeling approach to generate in silico structural models for an aMOF based on Fe trimers and 1,3,5-benzenetricarboxylate (BTC) linkers, Fe-BTC. We build a phase space for this material that includes nine amorphous phases with different degrees of defects and local order. These models are analyzed through a combination of structural analysis, pore analysis, and pair distribution functions. Therefore, we are able to systematically explore the effects of the variation of each of these features, both in isolation and combined, for a disordered MOF system, something that would not be possible through experiment alone. We find that the degree of local order has a greater impact on structure and properties than the degree of defects. The approach presented here is versatile and allows for the study of different structural features and MOF chemistries, enabling the derivation of design rules for the rational development of aMOFs.

19.
J Am Chem Soc ; 144(38): 17661-17670, 2022 09 28.
Article in English | MEDLINE | ID: mdl-36168797

ABSTRACT

The future of water-derived hydrogen as the "sustainable energy source" straightaway bets on the success of the sluggish oxygen-generating half-reaction. The endeavor to emulate the natural photosystem II for efficient water oxidation has been extended across the spectrum of organic and inorganic combinations. However, the achievement has so far been restricted to homogeneous catalysts rather than their pristine heterogeneous forms. The poor structural understanding and control over the mechanistic pathway often impede the overall development. Herein, we have synthesized a highly crystalline covalent organic framework (COF) for chemical and photochemical water oxidation. The interpenetrated structure assures the catalyst stability, as the catalyst's performance remains unaltered after several cycles. This COF exhibits the highest ever accomplished catalytic activity for such an organometallic crystalline solid-state material where the rate of oxygen evolution is as high as ∼26,000 µmol L-1 s-1 (second-order rate constant k ≈ 1650 µmol L s-1 g-2). The catalyst also proves its exceptional activity (k ≈ 1600 µmol L s-1 g-2) during light-driven water oxidation under very dilute conditions. The cooperative interaction between metal centers in the crystalline network offers 20-30-fold superior activity during chemical as well as photocatalytic water oxidation as compared to its amorphous polymeric counterpart.


Subject(s)
Metal-Organic Frameworks , Water , Hydrogen , Oxygen/chemistry , Photosystem II Protein Complex/chemistry , Water/chemistry
20.
Chem Sci ; 13(26): 7920-7932, 2022 Jul 06.
Article in English | MEDLINE | ID: mdl-35865887

ABSTRACT

Solid porous and crystalline covalent organic frameworks (COFs) are characterized by their higher specific BET surface areas and functional pore walls, which allow the adsorption of various bioactive molecules inside the porous lattices. We have introduced a perylene-based COF, PER@PDA-COF-1, which acts as an effective porous volumetric reservoir for an anticancer drug, mitoxantrone (MXT). The drug-loaded COF (MXT-PER@PDA-COF-1) exhibited zero cellular release of MXT towards cancer cells, which can be attributed to the strong intercalation between the anthracene-dione motif of the drug and the perylene-based COF backbone. Here, we have introduced a strategy involving the serum-albumin-triggered intracellular release of mitoxantrone from MXT-PER@PDA-COF-1. The serum albumin acts as an exfoliating agent and as a colloidal stabilizer in PBS medium (pH = 7.4), rapidly forming a protein corona around the exfoliated COF crystallites and inducing the sustained release of MXT from the COF into tumorigenic cells.

SELECTION OF CITATIONS
SEARCH DETAIL
...