Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 99
Filter
2.
Vet Res Commun ; 2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38888631

ABSTRACT

Non-aureus staphylococci and mammaliicocci (NASM) are the microorganisms most frequently isolated from milk. Given their numerosity and complexity, MALDI-TOF MS is one of the preferred species identification approaches. Nevertheless, reference mass spectra for the novel species Staphylococcus borealis were included only recently in the Bruker Biotyper System (MBT) library, and other species of veterinary interest such as S. rostri are still absent. This work provides an updated picture of the NASM species found in milk, gained by retrospectively analyzing the data relating to 21,864 milk samples, of which 6,278 from clinical mastitis (CM), 4,039 from subclinical mastitis (SCM), and 11,547 from herd survey (HS), with a spectrum library including both species. As a result, S. borealis was the second most frequently isolated NASM (17.07%) after S. chromogenes (39.38%) in all sample types, with a slightly higher percentage in CM (21.84%), followed by SCM (17.65%), and HS (14.38%). S. rostri was also present in all sample types (3.34%), reaching 8.43% of all NASM in SCM and showing a significant association (p < 0.01) with this condition. Based on our findings, the presence of S. borealis and S. rostri in milk and their potential association with mastitis might have been overlooked, possibly due to the difficulties in differentiating these species from other closely related NASM. Our results indicate that S. borealis could be a more frequent contributor to bovine udder infections than previously thought and that S. rostri should also not be underestimated considering its significant association with SCM.

3.
PLoS One ; 19(4): e0299929, 2024.
Article in English | MEDLINE | ID: mdl-38573969

ABSTRACT

A cross-sectional study was conducted to estimate the prevalence of intramammary infection (IMI) associated bacteria and to identify risk factors for pathogen group-specific IMI in water buffalo in Bangladesh. A California Mastitis Test (CMT) and bacteriological cultures were performed on 1,374 quarter milk samples collected from 763 water buffalo from 244 buffalo farms in nine districts in Bangladesh. Quarter, buffalo, and farm-related data were obtained through questionnaires and visual observations. A total of 618 quarter samples were found to be culture positive. Non-aureus staphylococci were the predominant IMI-associated bacterial species, and Staphylococcus (S.) chromogenes, S. hyicus, and S. epidermidis were the most common bacteria found. The proportion of non-aureus staphylococci or Mammaliicoccus sciuri (NASM), S. aureus, and other bacterial species identified in the buffalo quarter samples varied between buffalo farms. Therefore, different management practices, buffalo breeding factors, and nutrition were considered and further analyzed when estimating the IMI odds ratio (OR). The odds of IMI by any pathogen (OR: 1.8) or by NASM (OR: 2.2) was high in buffalo herds with poor milking hygiene. Poor cleanliness of the hind quarters had a high odds of IMI caused by any pathogen (OR: 2.0) or NASM (OR: 1.9). Twice daily milking (OR: 3.1) and farms with buffalo purchased from another herd (OR: 2.0) were associated with IMI by any pathogen. Asymmetrical udders were associated with IMI-caused by any bacteria (OR: 1.7). A poor body condition score showed higher odds of IMI by any pathogen (OR: 1.4) or by NASM (OR: 1.7). This study shows that the prevalence of IMI in water buffalo was high and varied between farms. In accordance with the literature, our data highlight that IMI can be partly controlled through better farm management, primarily by improving hygiene, milking management, breeding, and nutrition.


Subject(s)
Mastitis, Bovine , Staphylococcal Infections , Staphylococcus , Animals , Female , Cattle , Staphylococcus aureus , Staphylococcal Infections/microbiology , Buffaloes , Cross-Sectional Studies , Mastitis, Bovine/microbiology , Milk/microbiology , Staphylococcus epidermidis , Risk Factors , Mammary Glands, Animal/microbiology
4.
Antibiotics (Basel) ; 13(3)2024 Mar 05.
Article in English | MEDLINE | ID: mdl-38534676

ABSTRACT

This study investigated the presence, distribution, and antimicrobial resistance profiles of extended-spectrum beta-lactamase (ESBL)-producing Escherichia coli in a dairy herd located in Northern Italy. The feces of clinically healthy calves, their mothers, and the cows treated for mastitis, as well as water, environmental samples, and waste milk were collected and subjected to bacteriological culture on CHROMagarTM ESBL plates. A questionnaire was administered to identify risk factors. The isolates were identified as E. coli by MALDI-TOF MS and subjected to the double-disk synergy test (DDST) and minimal inhibitory concentration (MIC) assay. As a result, ESBL E. coli was isolated from the feces of 28 of 37 (75.67%) calves, the feces of 2 of 3 (66.67%) treated cows, 8 of 14 (57.15%) environmental samples, and waste milk. All ESBL isolates showed multiple resistances and were categorized as multidrug-resistant (MDR). Several risk factors for ESBL E. coli selection and diffusion were identified, including lack of routine cleaning of calf feeding and housing equipment, administration of waste milk to male calves, and blanket dry cow therapy. In conclusion, this study highlighted the presence of MDR, ESBL E. coli in the feces of most dairy calves, and their association with different sample sources. Accordingly, adding to the prudent use of antibiotics, the adoption of adequate farm hygiene and biosecurity measures might also help prevent the spread and transmission of ESBL E. coli within the herd.

5.
Vet Res Commun ; 48(1): 547-554, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37558858

ABSTRACT

Non-aureus staphylococci and mammaliicocci (NASM) are associated with bovine mastitis and increased milk somatic cell count (SCC) but their relationships with mammary gland health at the species level are not clearly defined. Regional differences have also been reported in their specific prevalence. The implementation of MALDI-TOF MS in milk microbiology is generating large and dependable datasets with the potential of providing useful epidemiological information. We present the retrospective analysis of 17,213 milk samples sent to our laboratory in 2021-2022, including 13,146 quarter samples from cows with subclinical (SCM) or clinical mastitis (CM) from 104 farms, and 4,067 composite herd survey (HS) samples from 21 farms. NASM were isolated from 21.12% of SCM, 11.49% of CM, and 15.59% of HS milk samples. The three most frequently identified NASM in SCM milk were Staphylococcus chromogenes (33.33%), S. haemolyticus (26.07%), and S. epidermidis (10.65%); together with S. microti and S. hyicus, these species were significantly more prevalent in quarters with SCM (p < 0.05). The three most frequently identified NASM in CM milk were S. chromogenes (31.69%), S. haemolyticus (21.42%), and Mammaliicoccus sciuri (18.38%), although no significant associations were found between these NASM species and CM. The three most frequently identified NASM in HS milk were S. chromogenes (44.49%), S. epidermidis (17.84%), and S. haemolyticus (17.23%), with S. chromogenes being isolated in all the farms sending HS milk (100%). In conclusion, this retrospective study provides the first information on the NASM species isolated from cow milk in Italy, expanding our knowledge on the epidemiology of NASM at the species level and providing further insights into their relationships with mammary gland health in modern dairy farms.


Subject(s)
Cattle Diseases , Mastitis, Bovine , Staphylococcal Infections , Female , Cattle , Animals , Retrospective Studies , Milk/microbiology , Staphylococcal Infections/veterinary , Farms , Mastitis, Bovine/epidemiology , Mastitis, Bovine/microbiology , Cattle Diseases/microbiology
6.
Sci Rep ; 13(1): 21595, 2023 12 07.
Article in English | MEDLINE | ID: mdl-38062040

ABSTRACT

Omega-3 polyunsaturated fatty acids (n-3 PUFA), such as the eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), are reported to beneficially affect the intestinal immunity. The biological pathways modulated by n-3 PUFA during an infection, at the level of intestinal epithelial barrier remain elusive. To address this gap, we investigated the proteomic changes induced by n-3 PUFA in porcine enterocyte cell line (IPEC-J2), in the presence and absence of lipopolysaccharide (LPS) stress conditions using shotgun proteomics analysis integrated with RNA-sequencing technology. A total of 33, 85, and 88 differentially abundant proteins (DAPs) were identified in cells exposed to n-3 PUFA (DHA:EPA), LPS, and n-3 PUFA treatment followed by LPS stimulation, respectively. Functional annotation and pathway analysis of DAPs revealed the modulation of central carbon metabolism, including the glycolysis/gluconeogenesis, pentose phosphate pathway, and oxidative phosphorylation processes. Specifically, LPS caused metabolic dysregulation in enterocytes, which was abated upon prior treatment with n-3 PUFA. Besides, n-3 PUFA supplementation facilitated enterocyte development and lipid homeostasis. Altogether, this work for the first time comprehensively described the biological pathways regulated by n-3 PUFA in enterocytes, particularly during endotoxin-stimulated metabolic dysregulation. Additionally, this study may provide nutritional biomarkers in monitoring the intestinal health of human and animals on n-3 PUFA-based diets.


Subject(s)
Fatty Acids, Omega-3 , Humans , Animals , Swine , Fatty Acids, Omega-3/pharmacology , Fatty Acids, Omega-3/metabolism , Enterocytes/metabolism , Endotoxins , Lipopolysaccharides/pharmacology , Proteomics , Eicosapentaenoic Acid/metabolism , Docosahexaenoic Acids/metabolism , Fatty Acids/metabolism
7.
Vet Res ; 54(1): 120, 2023 Dec 14.
Article in English | MEDLINE | ID: mdl-38098120

ABSTRACT

Staphylococcus aureus modulates the host immune response directly by interacting with the immune cells or indirectly by secreting molecules (secretome). Relevant differences in virulence mechanisms have been reported for the secretome produced by different S. aureus strains. The present study investigated the S. aureus secretome impact on peripheral bovine mononuclear cells (PBMCs) by comparing two S. aureus strains with opposite epidemiological behavior, the genotype B (GTB)/sequence type (ST) 8, associated with a high within-herd prevalence, and GTS/ST398, associated with a low within-herd prevalence. PBMCs were incubated with different concentrations (0%, 0.5%, 1%, and 2.5%) of GTB/ST8 and GTS/ST398 secretome for 18 and 48 h, and the viability was assessed. The mRNA levels of pro- (IL1-ß and STAT1) and anti-inflammatory (IL-10, STAT6, and TGF-ß) genes, and the amount of pro- (miR-155-5p and miR-125b-5p) and anti-inflammatory (miR-146a and miR-145) miRNAs were quantified by RT-qPCR. Results showed that incubation with 2.5% of GTB/ST8 secretome increased the viability of cells. In contrast, incubation with the GTS/ST398 secretome strongly decreased cell viability, preventing any further assays. The GTB/ST8 secretome promoted PBMC polarization towards the pro-inflammatory phenotype inducing the overexpression of IL1-ß, STAT1 and miR-155-5p, while the expression of genes involved in the anti-inflammatory response was not affected. In conclusion, the challenge of PBMC to the GTS/ST398 secretome strongly impaired cell viability, while exposure to the GTB/ST8 secretome increased cell viability and enhanced a pro-inflammatory response, further highlighting the different effects exerted on host cells by S. aureus strains with epidemiologically divergent behaviors.


Subject(s)
Cattle Diseases , MicroRNAs , Staphylococcal Infections , Animals , Cattle , Staphylococcus aureus/genetics , Leukocytes, Mononuclear , Secretome , Anti-Inflammatory Agents , Staphylococcal Infections/veterinary
8.
Animals (Basel) ; 13(18)2023 Sep 15.
Article in English | MEDLINE | ID: mdl-37760333

ABSTRACT

In recent years, research on fish has seen remarkable advancements, especially in aquaculture, ornamental fish industry, and biomedical studies. Immunohistochemistry has become crucial in fish research, aiding in physiological and pathological investigations. However, the use of antibodies originally developed for mammals has raised concerns about their cross-reactivity and specificity in fish. This study systematically evaluated the reactivity of commonly used antibodies for diagnostic purposes, especially in fish pathology, including pan-cytokeratin, vimentin, S-100, glial fibrillary acidic protein, and desmin in the tissue of Sparus aurata, Dicentrarchus labrax, Oncorhynchus mykiss, and Carassius auratus. Western immunoblotting was employed to assess antibody specificity. The results revealed that the pan-cytokeratin and glial fibrillary acidic protein antibodies cross-react with all tested fish species, while S-100 demonstrated specific staining in sea bream, goldfish, and rainbow trout tissues. Conversely, vimentin and desmin antibodies displayed no reactivity. In conclusion, the anti-cytokeratin clone AE1/AE3 and the polyclonal rabbit anti-glial fibrillary acidic protein antibody, which are extensively used in mammals, were validated for fish immunohistochemical studies. Regrettably, D33 anti-desmin and V9 anti-vimentin clones are unsuitable for immunohistochemistry in the tested fish. These findings underscore the need for species-specific antibodies and proper validation for accurate immunohistochemistry analyses in fish research.

9.
Front Microbiol ; 14: 1120305, 2023.
Article in English | MEDLINE | ID: mdl-37250045

ABSTRACT

Accurate and precise differentiation of staphylococci isolated from milk is of importance for udder health management. In particular, the rapid and specific identification of Staphylococcus aureus plays an essential role in the prevention and treatment programs for bovine mastitis. Plasma gelatinization in coagulase assays is routinely used to discriminate S. aureus from other species by detecting the presence of extracellular free staphylocoagulase. However, rarely occurring coagulase-deficient S. aureus strains can be responsible for clinical and subclinical mastitis cases. By investigating S. aureus isolates from a single herd over a 10-year period we identified the persistence of a phenotypically coagulase-negative S. aureus strain and pinpointed the possible cause to a single base pair deletion in the coa gene sequence. Our results support the need to integrate primary biochemical tests with molecular/sequence analysis approaches for correctly identifying and discriminating atypical S. aureus in bovine herds, as the coagulase test alone may fail to detect persistent mastitis-causing strains.

10.
Vet Res Commun ; 47(3): 1665-1674, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37074614

ABSTRACT

Staphylococcus aureus is the most common clinical mastitis-associated pathogen in sheep which contributes to reduced welfare of affected animals and, therefore, compromises the quality and quantity of milk production. To prevent mastitis and its spread, it is essential to guarantee adequate breeding conditions and animal health, through the adoption of good farm management practices and the application of suitable biosecurity measures. Vaccination can play a strategic role in prevention, control, and eradication of diseases. The identification of secreted and cellular antigens of the predominant sheep-CC130/ST700/t1773 lineage would assist in the design of effective vaccine against mammary infections caused by S. aureus. In the current study, we carried out a 3D structural prediction analysis with the identification of the best B cell epitopes of the whole and secreted portion of S. aureus AtlA. Fragments of atlA, containing the main predicted epitopes, were amplified, cloned, and expressed in Escherichia coli for recombinant protein production. Two selected clones produced recombinant proteins (rAtl4 and rAtl8) showing strong reactivity with a hyperimmune serum against the native AtlA and with blood sera collected from sheep with clinical S. aureus mastitis. These may represent potential candidate protein-based vaccines able to elicit a protective immune response to be evaluated by vaccination and subsequent challenge of the vaccinated sheep.


Subject(s)
Cattle Diseases , Mastitis, Bovine , Sheep Diseases , Staphylococcal Infections , Female , Animals , Sheep , Cattle , Staphylococcus aureus , Epitopes, B-Lymphocyte , N-Acetylmuramoyl-L-alanine Amidase , Staphylococcal Infections/prevention & control , Staphylococcal Infections/veterinary , Recombinant Proteins , Vaccine Development , Escherichia coli , Mastitis, Bovine/prevention & control , Sheep Diseases/prevention & control
11.
Vet Res ; 53(1): 84, 2022 Oct 15.
Article in English | MEDLINE | ID: mdl-36243811

ABSTRACT

Staphylococci and streptococci are common causes of intramammary infection in small ruminants, and reliable species identification is crucial for understanding epidemiology and impact on animal health and welfare. We applied MALDI-TOF MS and gap PCR-RFLP to 204 non-aureus staphylococci (NAS) and mammaliicocci (NASM) and to 57 streptococci isolated from the milk of sheep and goats with mastitis. The top identified NAS was Staphylococcus epidermidis (28.9%) followed by Staph. chromogenes (27.9%), haemolyticus (15.7%), caprae, and simulans (6.4% each), according to both methods (agreement rate, AR, 100%). By MALDI-TOF MS, 13.2% were Staph. microti (2.9%), xylosus (2.0%), equorum, petrasii and warneri (1.5% each), Staph. sciuri (now Mammaliicoccus sciuri, 1.0%), arlettae, capitis, cohnii, lentus (now M. lentus), pseudintermedius, succinus (0.5% each), and 3 isolates (1.5%) were not identified. PCR-RFLP showed 100% AR for Staph. equorum, warneri, arlettae, capitis, and pseudintermedius, 50% for Staph. xylosus, and 0% for the remaining NASM. The top identified streptococcus was Streptococcus uberis (89.5%), followed by Strep. dysgalactiae and parauberis (3.5% each) and by Strep. gallolyticus (1.8%) according to both methods (AR 100%). Only one isolate was identified as a different species by MALDI-TOF MS and PCR-RFLP. In conclusion, MALDI-TOF MS and PCR-RFLP showed a high level of agreement in the identification of the most prevalent NAS and streptococci causing small ruminant mastitis. Therefore, gap PCR-RFLP can represent a good identification alternative when MALDI-TOF MS is not available. Nevertheless, some issues remain for Staph. haemolyticus, minor NAS species including Staph. microti, and species of the novel genus Mammaliicoccus.


Subject(s)
Cattle Diseases , Goat Diseases , Mastitis, Bovine , Sheep Diseases , Staphylococcal Infections , Animals , Cattle , Female , Goats , Mastitis, Bovine/diagnosis , Milk , Polymerase Chain Reaction/veterinary , Polymorphism, Restriction Fragment Length , Sheep , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization/veterinary , Staphylococcal Infections/veterinary , Staphylococcus , Streptococcus/genetics
12.
Sci Rep ; 12(1): 9665, 2022 06 11.
Article in English | MEDLINE | ID: mdl-35690599

ABSTRACT

This study aimed to determine the lipidome of water buffalo milk with intramammary infection (IMI) by non-aureus staphylococci (NAS), also defined as coagulase-negative staphylococci, using an untargeted lipidomic approach. Non-aureus Staphylococci are the most frequently isolated pathogens from dairy water buffalo milk during mastitis. A total of 17 milk samples from quarters affected by NAS-IMI were collected, and the lipidome was determined by liquid chromatography-quadrupole time-of-flight mass spectrometry. The results were compared with the lipidome determined on samples collected from 16 healthy quarters. The study identified 1934 different lipids, which were classified into 15 classes. The abundance of 72 lipids changed in NAS-IMI milk compared to healthy quarters. Significant changes occurred primarily in the class of free fatty acids. The results of this study provided first-time insight into the lipidome of dairy water buffalo milk. Moreover, the present findings provide evidence that NAS-IMI induces changes in water buffalo milk's lipidome.


Subject(s)
Mastitis, Bovine , Staphylococcal Infections , Animals , Buffaloes , Cattle , Female , Lipidomics , Lipids , Mammary Glands, Animal , Milk , Staphylococcal Infections/veterinary , Staphylococcus
13.
BMC Vet Res ; 18(1): 212, 2022 Jun 02.
Article in English | MEDLINE | ID: mdl-35655210

ABSTRACT

BACKGROUND: In a collaboration between animal and human health care professionals, we assessed the genetic characteristics shared by non-aureus staphylococci (NAS) infecting humans and dairy ewes to investigate their relatedness in a region concentrating half of the total National sheep stock. We examined by PCR 125 ovine and 70 human NAS for biofilm production, pyrogenic toxins, adhesins, autolysins genes, and accessory gene regulator (agr) locus. The microtiter plate assay (MPA) was used for the phenotypic screening of biofilm production. Ovine NAS included S. epidermidis, S. chromogenes, S. haemolyticus, S. simulans, S. caprae, S. warneri, S. saprophyticus, S. intermedius, and S. muscae. Human NAS included S. haemolyticus, S. epidermidis, S. hominis, S. lugdunensis, S. capitis, S. warneri, S. xylosus, S. pasteuri, and S. saprophyticus subsp. bovis. RESULTS: Phenotypically, 41 (32.8%) ovine and 24 (34.3%) human isolates were characterized as biofilm producers. Of the ovine isolates, 12 were classified as biofilm-producing while the remaining 29 as weak biofilm-producing. All 24 human isolates were considered weak biofilm-producing. Few S. epidermidis isolates harbored the icaA/D genes coding for the polysaccharide intercellular adhesin (PIA), while the bhp, aap, and embp genes coding biofilm accumulation proteins were present in both non-producing and biofilm-producing isolates. Fifty-nine sheep NAS (all S. epidermidis, 1 S. chromogenes, and 1 S. haemolyticus) and 27 human NAS (all S. epidermidis and 1 S. warneri) were positive for the agr locus: agr-3se (57.8%) followed by agr-1se (36.8%) predominated in sheep, while agr-1se (65.4%), followed by agr-2se (34.6%) predominated in humans. Concerning virulence genes, 40, 39.2, 47.2%, 52.8, 80 and 43.2% of the sheep isolates carried atlE, aae, sdrF, sdrG, eno and epbS respectively, against 37.1, 42.8, 32.8, 60, 100 and 100% of human isolates. Enterotoxins and tsst were not detected. CONCLUSIONS: Considerable variation in biofilm formation ability was observed among NAS isolates from ovine and human samples. S. epidermidis was the best biofilm producer with the highest prevalence of adhesin-encoding genes.


Subject(s)
Biofilms , Staphylococcus , Adhesins, Bacterial/genetics , Animals , Enterotoxins , Female , Humans , Sheep , Staphylococcus/genetics , Virulence/genetics
14.
Sci Rep ; 12(1): 8371, 2022 05 19.
Article in English | MEDLINE | ID: mdl-35589845

ABSTRACT

Mastitis by non-aureus staphylococci (NAS) is a significant issue in dairy buffalo farming. In a herd with subclinical NAS mastitis, we identified Staphylococcus microti as the predominant species. To assess milk protein integrity and investigate potential disease markers, we characterized 12 NAS-positive and 12 healthy quarter milk samples by shotgun peptidomics combining peptide enrichment and high-performance liquid chromatography/tandem mass spectrometry (LC-MS/MS). We observed significant changes in the milk peptidome. Out of 789 total peptides identified in each group, 49 and 44 were unique or increased in NAS-positive and healthy milk, respectively. In NAS-positive milk, the differential peptides belonged mainly to caseins, followed by milk fat globule membrane proteins (MFGMP) and by the immune defense/antimicrobial proteins osteopontin, lactoperoxidase, and serum amyloid A. In healthy milk, these belonged mainly to MFGMP, followed by caseins. In terms of abundance, peptides from MFGMP and immune defense protein were higher in NAS-positive milk, while peptides from caseins were higher in healthy milk. These findings highlight the impact of NAS on buffalo milk quality and mammary gland health, even when clinical signs are not evident, and underscore the need for clarifying the epidemiology and relevance of the different NAS species in this dairy ruminant.


Subject(s)
Mastitis, Bovine , Staphylococcal Infections , Animals , Buffaloes/metabolism , Caseins/metabolism , Cattle , Cell Count , Chromatography, Liquid , Female , Humans , Staphylococcal Infections/epidemiology , Staphylococcal Infections/veterinary , Tandem Mass Spectrometry
15.
Vet Res Commun ; 46(2): 329-351, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35195874

ABSTRACT

Mastitis is one of the most impacting diseases in dairy farming, and its sensitive and specific detection is therefore of the greatest importance. The clinical evaluation of udder and mammary secretions is typically combined with the milk Somatic Cell Count (SCC) and often accompanied by its bacteriological culture to identify the causative microorganism. In a constant search for improvement, several non-enzymatic milk proteins, including milk amyloid A (M-SAA), haptoglobin (HP), cathelicidin (CATH), and lactoferrin (LF), have been investigated as alternative biomarkers of mastitis for their relationship with mammary gland inflammation, and immunoassay techniques have been developed for detection with varying degrees of success. To provide a general overview of their implementation in the different dairy species, we carried out a systematic review of the scientific literature using the PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analysis) guidelines. Our review question falls within the type "Diagnostic test accuracy questions" and aims at answering the diagnostic question: "Which are the diagnostic performances of mastitis protein biomarkers investigated by immunoassays in ruminant milk?". Based on 13 keywords combined into 42 searches, 523 manuscripts were extracted from three scientific databases. Of these, 33 passed the duplicate removal, title, abstract, and full-text screening for conformity to the review question and document type: 78.8% investigated cows, 12.1% sheep, 9.1% goats, and 6.1% buffaloes (some included more than one dairy species). The most frequently mentioned protein was M-SAA (48.5%), followed by HP (27.3%), CATH (24.2%) and LF (21.2%). However, the large amount of heterogeneity among studies in terms of animal selection criteria (45.5%), index test (87.9%), and standard reference test (27.3%) resulted in a collection of data not amenable to meta-analysis, a common finding illustrating how important it is for case definitions and other criteria to be standardized between studies. Therefore, results are presented according to the SWiM (Synthesis Without Meta-analysis) guidelines. We summarize the main findings reported in the 33 selected articles for the different markers and report their results in form of comparative tables including sample selection criteria, marker values, and diagnostic performances, where available. Finally, we report the study limitations and bias assessment findings.


Subject(s)
Cattle Diseases , Goat Diseases , Mastitis, Bovine , Sheep Diseases , Animals , Biomarkers/analysis , Cattle , Cell Count/veterinary , Female , Goats , Haptoglobins/analysis , Mammary Glands, Animal , Mastitis, Bovine/diagnosis , Milk/chemistry , Milk Proteins , Serum Amyloid A Protein/analysis , Sheep
16.
Front Vet Sci ; 8: 650150, 2021.
Article in English | MEDLINE | ID: mdl-34307516

ABSTRACT

The cows receiving antibiotics for intra-mammary infection (IMI) produce milk that cannot be marketed. This is considered waste milk (WM), and a convenient option for farmers is using it as calf food. However, adding to the risk of selecting resistant bacteria, residual antibiotics might interfere with the gut microbiome development and influence gastrointestinal health. We assessed the longitudinal effect of unpasteurized WM containing residual cefalexin on calf intestinal health and fecal microbiota in an 8-week trial. After 3 days of colostrum, six calves received WM and six calves received bulk tank milk (BM) for 2 weeks. For the following 6 weeks, all 12 calves received milk substitute and starter feed. Every week for the first 2 weeks and every 2 weeks for the remaining 6 weeks, we subjected all calves to clinical examination and collected rectal swabs for investigating the fecal microbiota composition. Most WM calves had diarrhea episodes in the first 2 weeks of the trial (5/6 WM and 1/6 BM), and their body weight was significantly lower than that of BM calves. Based on 16S rRNA gene analysis, WM calves had a lower fecal microbiota alpha diversity than that in BM calves, with the lowest p-value at Wk4 (p < 0.02), 2 weeks after exposure to WM. The fecal microbiota beta diversity of the two calf groups was also significantly different at Wk4 (p < 0.05). Numerous significant differences were present in the fecal microbiota taxonomy of WM and BM calves in terms of relative normalized operational taxonomic unit (OTU) levels, affecting five phyla, seven classes, eight orders, 19 families, and 47 genera. At the end of the trial, when 6 weeks had passed since exposure to WM, the phyla Bacteroidetes, Firmicutes, and Saccharibacteria were lower, while Chlamydiae were higher in WM calves. Notably, WM calves showed a decrease in beneficial taxa such as Faecalibacterium, with a concomitant increase in potential pathogens such as Campylobacter, Pseudomonas, and Chlamydophila spp. In conclusion, feeding pre-weaned calves with unpasteurized WM containing antibiotics is related to a higher incidence of neonatal diarrhea and leads to significant changes in the fecal microbiota composition, further discouraging this practice in spite of its short-term economic advantages.

17.
Vet Immunol Immunopathol ; 236: 110239, 2021 Jun.
Article in English | MEDLINE | ID: mdl-33845295

ABSTRACT

Contagious agalactia represents one of the most relevant infectious diseases of dairy sheep, with Mycoplasma agalactiae being the primary etiological agent. The early, sensitive, and specific identification of infected animals, as well as the development of efficient prophylactic tools, remain challenging. Here, we present a comprehensive characterization of M. agalactiae antigens focusing on those shared among different isolates. Leveraging on previous proteomic data obtained on individual strains, we adopted a strategy entailing sample pooling to optimize the identification of conserved proteins that induce an immune response. The liposoluble proteins from previously characterized field isolates and the type strain PG2T were enriched by Triton X-114 fractionation, pooled, analysed by one-dimensional (1D) and two-dimensional (2D) electrophoresis, and subjected to western immunoblotting against sheep sera collected during natural infection with M. agalactiae. Immunodominant antigens were identified by Matrix-Assisted Laser Desorption-Time-Of-Flight-Mass Spectrometry (MALDI-TOF-MS). This combined immunoproteomic approach confirmed the role of several known immunogens, including P80, P48, and P40, and most variable surface proteins (Vpmas), and unveiled novel immunodominant, conserved antigens, including MAG_1000, MAG_2220, MAG_1980, phnD, MAG_4740, and MAG_2430. Genomic context, functional prediction, subcellular localization, and invariable expression of these proteins in all isolates suggest their possible involvement in bacterial pathogenicity and metabolism. Moreover, most of the identified antigens elicit a host humoral response since the early stages of infection, persisting for at least 270 days. The immunodominant, conserved antigen panel identified in this work supports the development of effective vaccines and diagnostic tools with higher sensitivity and specificity in all the natural infection stages.


Subject(s)
Antigens, Bacterial/immunology , Immunodominant Epitopes/immunology , Mycoplasma agalactiae/chemistry , Mycoplasma agalactiae/immunology , Proteomics/methods , Animals , Antigens, Surface/isolation & purification , Bacterial Proteins/classification , Bacterial Proteins/genetics , Bacterial Proteins/immunology , Immunodominant Epitopes/classification , Immunodominant Epitopes/isolation & purification , Mycoplasma agalactiae/genetics , Mycoplasma agalactiae/pathogenicity , Proteome , Sheep/immunology , Sheep/microbiology
18.
Microbiol Resour Announc ; 10(4)2021 Jan 28.
Article in English | MEDLINE | ID: mdl-33509992

ABSTRACT

Acholeplasma laidlawii can be isolated from cattle environments and different body sites of bovines. It is still under evaluation if A. laidlawii acts as a primary pathogen. Here, we present the whole-genome sequence of A. laidlawii isolated from the conjunctiva of a heifer with infectious bovine keratoconjunctivitis.

19.
Res Vet Sci ; 134: 112-119, 2021 Jan.
Article in English | MEDLINE | ID: mdl-33360571

ABSTRACT

Ovis aries papillomavirus 3 (OaPV3) is an epidermotropic PV reported in sheep cutaneous squamous cell carcinoma (SCC). The presence of OaPV3 DNA and its transcriptional activity in cutaneous SCC, as well as its in vitro transforming properties, suggest a viral etiology for this neoplasm. Nevertheless, the reactome associated with viral-host interaction is still unexplored. Here, we investigated and compared the proteomic profiles of OaPV3-positive SCCs, OaPV3-negative SCCs, and non-SCC samples by liquid chromatography tandem-mass spectrometry (LC-MS/MS) analysis, bioinformatics tools, and immunohistochemistry (IHC). OaPV3-positive SCCs (n = 3), OaPV3-negative SCCs (n = 3), and non-SCCs samples (n = 3) were subjected to a shotgun proteomic analysis workflow to assess protein abundance differences among the three sample classes. Proteins involved in epithelial cell differentiation, extracellular matrix organization, and apoptotic signaling showed different abundances in OaPV3-positive SCCs tissues (P ≤ 0.05) when compared to the other tissues. Cytokeratin 13 (CK 13) was among the most increased proteins in OaPV3-positive SCC and was validated by immunohistochemistry on 10 samples per class, confirming its potential as a biomarker of OaPV3 infection in SCC. Collectively, results provide a preliminary insight into the reactome associated with viral-host interaction and pave the way to the development of specific biomarkers for viral-induced sheep SCC.


Subject(s)
Biomarkers, Tumor/metabolism , Carcinoma, Squamous Cell/veterinary , Keratin-13/metabolism , Papillomavirus Infections/veterinary , Proteome , Sheep Diseases/virology , Skin Neoplasms/veterinary , Animals , Carcinoma, Squamous Cell/genetics , Carcinoma, Squamous Cell/metabolism , Carcinoma, Squamous Cell/virology , Chromatography, Liquid/veterinary , DNA, Viral , Papillomaviridae , Papillomavirus Infections/virology , Sheep/genetics , Sheep, Domestic/genetics , Skin Neoplasms/virology , Tandem Mass Spectrometry/veterinary
20.
Vet Immunol Immunopathol ; 230: 110149, 2020 Dec.
Article in English | MEDLINE | ID: mdl-33197719

ABSTRACT

Staphylococcus aureus is the leading cause of clinical mastitis and is associated with persistent subclinical infections in ewes, significantly compromising the quality and quantity of milk productions. To date, vaccines intended for use in sheep have been mainly focused on biofilm production traits, but many S. aureus pathogenic isolates do not produce biofilm, including those circulating in Sardinia, one of the leading sheep milk producers in Europe. The aim of this work was to identify suitable immunodominant, alternative candidates to biofilm components for vaccine and diagnostic development. An immunoproteomics study was carried out by testing sera from naturally infected sheep with a prevalent S. aureus lineage against cellular and secreted antigens, followed by tandem mass spectrometry identification of the most prominent immunogens. Four cellular and three secreted S. aureus antigens elicited a strong humoral host immune response. The four cellular antigens were the housekeeping proteins pyruvate kinase, elongation Factor Tu, dihydrolipoyl dehydrogenase, and alpha-keto acid dehydrogenase. The three secreted antigens were the bifunctional autolysin (Atl) and the two components of the Panton-Valentine leukocidin, lukF-PV/lukM, demonstrating the carriage of prophage phiPV83 in a sheep isolate and the strong response of the sheep host against them. In consideration of the key role played by these secreted proteins in S. aureus replication and immune evasion, these antigens may represent suitable candidates for developing vaccines eliciting a more successful immunological protection in areas where non-biofilm forming Staphylococcus spp. are the most widespread intramammary pathogens.


Subject(s)
Antigens, Bacterial/blood , Antigens, Bacterial/immunology , Mastitis, Bovine/microbiology , Sheep Diseases/microbiology , Staphylococcal Infections/veterinary , Staphylococcus aureus/chemistry , Staphylococcus aureus/immunology , Animals , Antigens, Bacterial/administration & dosage , Bacterial Toxins/immunology , Cattle , Cattle Diseases/immunology , Cattle Diseases/microbiology , Cattle Diseases/prevention & control , Exotoxins/immunology , Female , Immunity, Humoral , Leukocidins/immunology , Mastitis, Bovine/prevention & control , Proteomics/methods , Sheep , Sheep Diseases/immunology , Sheep Diseases/prevention & control , Staphylococcal Infections/immunology , Staphylococcal Vaccines , Staphylococcus aureus/genetics , Staphylococcus aureus/pathogenicity , Tandem Mass Spectrometry
SELECTION OF CITATIONS
SEARCH DETAIL
...