Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Data Brief ; 42: 108036, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35313492

ABSTRACT

A natural occurring class compound, cinnamic acid is composed of a benzene ring, an alkene double bond and an acrylic acid functional group. Due to the feasibility of its structure modifications with a variety of compounds, cinnamic acids have been actively explored to improve their biological efficacy. Cinnamic acid derivatives have been reported to exhibit an antimicrobial property. Despite the beneficial properties of cinnamic acid derivatives, the antiviral activity of the amide derivatives especially against the dengue virus is poorly defined. Herein, the cinnamic amide derivatives were evaluated for their potential as an anti-dengue virus through the in-silico analysis of the derivatives. This data aimed to analyze the interactions of the derivatives against the non-structural protein of viral target, dengue virus type 2 (DENV-2) NS2B/N3. The evaluation was based on binding affinity, interaction type (bond type and distance) and interaction with amino acids. Three derivatives (CAA15, CAA16 and CAA17) with the best docking score were reported. Enhanced understanding of the interaction acquired from this analysis provide a useful information on for the prediction of the binding behavior affinity of cinnamic amide derivatives and is ultimately useful in the rational design of drugs to synthesis new compounds with the potential benefits against DENV-2.

2.
Vaccines (Basel) ; 10(2)2022 Feb 17.
Article in English | MEDLINE | ID: mdl-35214771

ABSTRACT

Hemorrhagic septicemia (HS) caused by Pasteurella multocida B:2 and E:2 is among the fatal bacterial diseases in cattle and buffaloes that are economically valuable in Asian and African countries. The current work aims to study the prevalence of HS among buffaloes, cattle, sheep, and goats in 41 countries in 2005-2019. The data analysis revealed that 74.4% of the total infection rate in the world was distributed among cattle, followed by buffaloes (13.1%). The mortality of HS among cattle and buffaloes increased in 2017-2019 compared to the period between 2014 and 2016. The best measure to control the disease is through vaccination programs. Current commercial vaccines, including live-attenuated vaccines and inactivated vaccines, have some shortcomings and undesirable effects. Virus-like particles (VLPs) have more potential as a vaccine platform due to their unique properties to enhance immune response and the ability to use them as a platform for foreign antigens against infectious diseases. VLPs-based vaccines are among the new-generation subunit vaccine approaches that have been licensed for the human and veterinary fields. However, most studies are still in the late stages of vaccine evaluation.

3.
J Hazard Mater ; 420: 126624, 2021 10 15.
Article in English | MEDLINE | ID: mdl-34329083

ABSTRACT

In agriculture, the convenience and efficacy of chemical pesticides have become inevitable to manage cultivated crop production. Here, we review the worldwide use of pesticides based on their categories, mode of actions and toxicity. Excessive use of pesticides may lead to hazardous pesticide residues in crops, causing adverse effects on human health and the environment. A wide range of high-tech-analytical methods are available to analyse pesticide residues. However, they are mostly time-consuming and inconvenient for on-site detection, calling for the development of biosensors that detect cellular changes in crops. Such new detection methods that combine biological and physicochemical knowledge may overcome the shortage in current farming to develop sustainable systems that support environmental and human health. This review also comprehensively compiles domestic pesticide residues removal tips from vegetables and fruits. Synthetic pesticide alternatives such as biopesticide and nanopesticide are greener to the environment. However, its safety assessment for large-scale application needs careful evaluation. Lastly, we strongly call for reversions of pesticide application trends based on the changing climate, which is lacking in the current scenario.


Subject(s)
Pesticide Residues , Pesticides , Agriculture , Fruit/chemistry , Pesticide Residues/analysis , Pesticides/analysis , Vegetables/chemistry
4.
Virol J ; 12: 144, 2015 Sep 17.
Article in English | MEDLINE | ID: mdl-26377679

ABSTRACT

BACKGROUND: Our understanding of the proteolytic processing events at the NS1-2A junction in the flavivirus polyprotein has not markedly progressed since the early work conducted on dengue virus (DENV). This work identified an octapeptide sequence located immediately upstream of the cleavage site thought to be important in substrate recognition by an as yet unknown, endoplasmic reticulum-resident host protease. Of the eight amino acid recognition sequence, the highly conserved residues at positions P1, P3, P5, P7 and P8 (with respect to N-terminus of NS2A) are particularly sensitive to amino acid substitutions in terms of DENV NS1-NS2A cleavage efficiency; however, the role of the octapeptide in efficient NS1 and NS2A production of other flaviviruses has not been experimentally addressed. METHODS AND RESULTS: Using site-directed mutagenesis at the NS1-2A cleavage site of Murray Valley encephalitis virus (MVEV), we confirmed the dominant role of conserved octapeptide residues for efficient NS1-2A cleavage, while changes at variable and the P1' residues were mostly tolerated. However, digressions from the consensus cleavage motif derived from studies on DENV were also found. Thus, comparison of the impact on cleavage of mutations at the NS1-2A junction of MVEV and DENV showed virus-specific differences at both conserved and variable residues. CONCLUSION: We show, with subgenomic expression and infectious clone-derived mutants of MVEV that conserved residues in the flavivirus octapeptide motif can be replaced with a different amino acid without markedly reducing cleavage efficiency of NS1 and NS2A.


Subject(s)
Encephalitis Virus, Murray Valley/physiology , Polyproteins/metabolism , Protein Processing, Post-Translational , Viral Proteins/metabolism , DNA Mutational Analysis , Dengue Virus/physiology , Encephalitis Virus, Murray Valley/genetics , Mutagenesis, Site-Directed , Polyproteins/genetics , Viral Proteins/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...