Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 41
Filter
1.
Mil Med ; 188(Suppl 6): 369-376, 2023 11 08.
Article in English | MEDLINE | ID: mdl-37948242

ABSTRACT

INTRODUCTION: Rapidly changing hemodynamic conditions, such as uncontrolled hemorrhage and the resulting hypovolemic shock, are a common contributor to active duty military deaths. These conditions can cause cerebral desaturation, and outcomes may improve when regional cerebral oxygen saturation (CrSO2) is monitored using near-infrared spectroscopy (NIRS) and desaturation episodes are recognized and reversed. The purpose of this porcine study was to investigate the ability of NIRS monitoring to detect changes in regional cerebral and regional renal perfusion during hypovolemia, resuscitation by volume infusion, and vasoconstriction. MATERIALS AND METHODS: Hemorrhagic shock was induced by removing blood through a central venous catheter until mean arterial pressure (MAP) was <40 mmHg. Each blood removal step was followed by a 10-minute stabilization period, during which cardiac output, blood pressure, central venous pressure, blood oxygen saturation, and CrSO2 and regional renal oxygen saturation (RrSO2) were measured. Shock was reversed using blood infusion and vasoconstriction separately until MAP returned to normal. Statistical comparisons between groups were performed using the paired t-test or the Wilcoxon signed-rank test. RESULTS: Using volume resuscitation, both CrSO2 and RrSO2 returned to normal levels after hypovolemia. Blood pressure management with phenylephrine returned CrSO2 levels to normal, but RrSO2 levels remained significantly lower compared to the pre-hemorrhage values (P < .0001). Comparison of the percent CrSO2 as a function of MAP showed that CrSO2 levels approach baseline when a normal MAP is reached during volume resuscitation. In contrast, a significantly higher MAP was required to return to baseline CrSO2 during blood pressure management with phenylephrine (P < .0001). Evaluation of carotid blood flow and CrSO2 indicated that during induction of hypovolemia, the two measures are strongly correlated. In contrast, there was limited correlation between carotid blood flow and CrSO2 during blood infusion. CONCLUSIONS: This study demonstrated that it is possible to restore CrSO2 by manipulating MAP with vasoconstriction, even in profound hypotension. However, MAP manipulation may result in unintended consequences for other organs, such as the kidney, if the tissue is not reoxygenated sufficiently. The clinical implications of these results and how best to respond to hypovolemia in the pre-hospital and hospital settings should be elucidated by additional studies.


Subject(s)
Hypovolemia , Shock, Hemorrhagic , Animals , Swine , Hypovolemia/therapy , Oxygen/therapeutic use , Vasoconstriction , Spectroscopy, Near-Infrared/methods , Prospective Studies , Kidney , Shock, Hemorrhagic/therapy , Phenylephrine , Perfusion
2.
Respir Med ; 220: 107463, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37993024

ABSTRACT

PURPOSE: Respiratory rate is a commonly used vital sign with various clinical applications. It serves as a crucial marker of acute health issues and any significant alteration in respiratory rate may be an early warning sign of major issues such as infections in the respiratory tract, respiratory failure, or cardiac arrest. Timely recognition of changes in respiratory rate enables prompt medical action, while neglecting to detect a change may lead to adverse patient outcomes. Here, we report on the performance of respiratory rate determined using a depth sensing camera system (RRdepth) which allows for continuous, non-contact 'touchless' monitoring of this important vital sign. METHODS: Thirty adult volunteers undertook a range of set breathing rates to cover a target breathing range of 4-40 breaths/min. Depth information was acquired from the torso region of the subjects using an Intel D415 RealSense camera positioned above the bed. The depth information was processed to generate a respiratory signal from which RRdepth was calculated. This was compared to a manually scored capnograph reference (RRcap). RESULTS: An overall RMSD accuracy of 0.77 breaths/min was achieved across the target respiratory rate range with a corresponding bias of 0.05 breaths/min. This corresponded to a line of best fit given by RRdepth = 1.01 x RRcap - 0.22 breaths/min with an associated high degree of correlation (R = 0.997). A breakdown of the performance with respect to sub-ranges corresponding to respiratory rates or ≤7, >7-10, >10-20, >20-30, >30 breaths/min all exhibited RMSD accuracies of less than 1.00 breaths/min. We also had the opportunity to test the performance of spontaneous breathing of the subjects which occurred during the study and found an overall RMSD accuracy of 1.20 breaths/min with corresponding accuracies ≤1.30 breaths/min across each of the individual sub-ranges. CONCLUSIONS: We have conducted an investigative study of a prototype depth sensing camera system for the non-contact monitoring of respiratory rate. The system achieved good performance with high accuracy across a wide range of rates including both clinically important high and low rates.


Subject(s)
Respiration , Respiratory Rate , Adult , Humans , Respiratory System , Technology , Monitoring, Physiologic/methods
3.
J Clin Monit Comput ; 37(4): 1003-1010, 2023 08.
Article in English | MEDLINE | ID: mdl-37010708

ABSTRACT

PURPOSE: Respiratory rate (RR) is one of the most common vital signs with numerous clinical uses. It is an important indicator of acute illness and a significant change in RR is often an early indication of a potentially serious complication or clinical event such as respiratory tract infection, respiratory failure and cardiac arrest. Early identification of changes in RR allows for prompt intervention, whereas failing to detect a change may result in poor patient outcomes. Here, we report on the performance of a depth-sensing camera system for the continuous non-contact 'touchless' monitoring of Respiratory Rate. METHODS: Seven healthy subjects undertook a range of breathing rates from 4 to 40 breaths-per-minute (breaths/min). These were set rates of 4, 5, 6, 8, 10, 15, 20, 25, 30, 35 and 40 breaths/min. In total, 553 separate respiratory rate recordings were captured across a range of conditions including body posture, position within the bed, lighting levels and bed coverings. Depth information was acquired from the scene using an Intel D415 RealSenseTM camera. This data was processed in real-time to extract depth changes within the subject's torso region corresponding to respiratory activity. A respiratory rate RRdepth was calculated using our latest algorithm and output once-per-second from the device and compared to a reference. RESULTS: An overall RMSD accuracy of 0.69 breaths/min with a corresponding bias of -0.034 was achieved across the target RR range of 4-40 breaths/min. Bland-Altman analysis revealed limits of agreement of -1.42 to 1.36 breaths/min. Three separate sub-ranges of low, normal and high rates, corresponding to < 12, 12-20, > 20 breaths/min, were also examined separately and each found to demonstrate RMSD accuracies of less than one breath-per-minute. CONCLUSIONS: We have demonstrated high accuracy in performance for respiratory rate based on a depth camera system. We have shown the ability to perform well at both high and low rates which are clinically important.


Subject(s)
Respiratory Rate , Vital Signs , Humans , Posture , Algorithms , Monitoring, Physiologic
4.
J Clin Monit Comput ; 36(3): 657-665, 2022 06.
Article in English | MEDLINE | ID: mdl-33743106

ABSTRACT

The monitoring of respiratory parameters is important across many areas of care within the hospital. Here we report on the performance of a depth-sensing camera system for the continuous non-contact monitoring of Respiratory Rate (RR) and Tidal Volume (TV), where these parameters were compared to a ventilator reference. Depth sensing data streams were acquired and processed over a series of runs on a single volunteer comprising a range of respiratory rates and tidal volumes to generate depth-based respiratory rate (RRdepth) and tidal volume (TVdepth) estimates. The bias and root mean squared difference (RMSD) accuracy between RRdepth and the ventilator reference, RRvent, across the whole data set was found to be -0.02 breaths/min and 0.51 breaths/min respectively. The least squares fit regression equation was determined to be: RRdepth = 0.96 × RRvent + 0.57 breaths/min and the resulting Pearson correlation coefficient, R, was 0.98 (p < 0.001). Correspondingly, the bias and root mean squared difference (RMSD) accuracy between TVdepth and the reference TVvent across the whole data set was found to be - 0.21 L and 0.23 L respectively. The least squares fit regression equation was determined to be: TVdepth = 0.79 × TVvent-0.01 L and the resulting Pearson correlation coefficient, R, was 0.92 (p < 0.001). In conclusion, a high degree of agreement was found between the depth-based respiration rate and its ventilator reference, indicating that RRdepth is a promising modality for the accurate non-contact respiratory rate monitoring in the clinical setting. In addition, a high degree of correlation between depth-based tidal volume and its ventilator reference was found, indicating that TVdepth may provide a useful monitor of tidal volume trending in practice. Future work should aim to further test these parameters in the clinical setting.


Subject(s)
Respiratory Rate , Ventilators, Mechanical , Humans , Monitoring, Physiologic/methods , Respiration, Artificial , Tidal Volume
5.
Sensors (Basel) ; 21(4)2021 Feb 06.
Article in English | MEDLINE | ID: mdl-33561970

ABSTRACT

There is considerable interest in the noncontact monitoring of patients as it allows for reduced restriction of patients, the avoidance of single-use consumables and less patient-clinician contact and hence the reduction of the spread of disease. A technology that has come to the fore for noncontact respiratory monitoring is that based on depth sensing camera systems. This has great potential for the monitoring of a range of respiratory information including the provision of a respiratory waveform, the calculation of respiratory rate and tidal volume (and hence minute volume). Respiratory patterns and apneas can also be observed in the signal. Here we review the ability of this method to provide accurate and clinically useful respiratory information.


Subject(s)
Respiratory Rate , Humans , Monitoring, Physiologic , Tidal Volume
6.
Anesth Analg ; 131(5): 1520-1528, 2020 11.
Article in English | MEDLINE | ID: mdl-33079875

ABSTRACT

BACKGROUND: Cerebral blood flow (CBF) is maintained over a range of blood pressures through cerebral autoregulation (CA). Blood pressure outside the range of CA, or impaired autoregulation, is associated with adverse patient outcomes. Regional oxygen saturation (rSO2) derived from near-infrared spectroscopy (NIRS) can be used as a surrogate CBF for determining CA, but existing methods require a long period of time to calculate CA metrics. We have developed a novel method to determine CA using cotrending of mean arterial pressure (MAP) with rSO2that aims to provide an indication of CA state within 1 minute. We sought to determine the performance of the cotrending method by comparing its CA metrics to data derived from transcranial Doppler (TCD) methods. METHODS: Retrospective data collected from 69 patients undergoing cardiac surgery with cardiopulmonary bypass were used to develop a reference lower limit of CA. TCD-MAP data were plotted to determine the reference lower limit of CA. The investigated method to evaluate CA state is based on the assessment of the instantaneous cotrending relationship between MAP and rSO2 signals. The lower limit of autoregulation (LLA) from the cotrending method was compared to the manual reference derived from TCD. Reliability of the cotrending method was assessed as uptime (defined as the percentage of time that the state of autoregulation could be measured) and time to first post. RESULTS: The proposed method demonstrated minimal mean bias (0.22 mmHg) when compared to the TCD reference. The corresponding limits of agreement were found to be 10.79 mmHg (95% confidence interval [CI], 10.09-11.49) and -10.35 mmHg (95% CI, -9.65 to -11.05). Mean uptime was 99.40% (95% CI, 99.34-99.46) and the mean time to first post was 63 seconds (95% CI, 58-71). CONCLUSIONS: The reported cotrending method rapidly provides metrics associated with CA state for patients undergoing cardiac surgery. A major strength of the proposed method is its near real-time feedback on patient CA state, thus allowing for prompt corrective action to be taken by the clinician.


Subject(s)
Cerebrovascular Circulation , Homeostasis , Intraoperative Neurophysiological Monitoring/methods , Spectroscopy, Near-Infrared/methods , Adult , Aged , Aged, 80 and over , Algorithms , Arterial Pressure , Blood Pressure , Cardiopulmonary Bypass , Female , Humans , Male , Middle Aged , Oxygen/blood , Retrospective Studies , Ultrasonography, Doppler, Transcranial
7.
J Clin Monit Comput ; 34(5): 1025-1033, 2020 Oct.
Article in English | MEDLINE | ID: mdl-31701371

ABSTRACT

Respiratory rate is a well-known to be a clinically important parameter with numerous clinical uses including the assessment of disease state and the prediction of deterioration. It is frequently monitored using simple spot checks where reporting is intermittent and often prone to error. We report here on an algorithm to determine respiratory rate continuously and robustly using a non-contact method based on depth sensing camera technology. The respiratory rate of 14 healthy volunteers was studied during an acute hypoxic challenge where blood oxygen saturation was reduced in steps to a target 70% oxygen saturation and which elicited a wide range of respiratory rates. Depth sensing data streams were acquired and processed to generate a respiratory rate (RRdepth). This was compared to a reference respiratory rate determined from a capnograph (RRcap). The bias and root mean squared difference (RMSD) accuracy between RRdepth and the reference RRcap was found to be 0.04 bpm and 0.66 bpm respectively. The least squares fit regression equation was determined to be: RRdepth = 0.99 × RRcap + 0.13 and the resulting Pearson correlation coefficient, R, was 0.99 (p < 0.001). These results were achieved with a 100% reporting uptime. In conclusion, excellent agreement was found between RRdepth and RRcap. Further work should include a larger cohort combined with a protocol to further test algorithmic performance in the face of motion and interference typical of that experienced in the clinical setting.


Subject(s)
Oximetry , Respiratory Rate , Capnography , Humans , Hypoxia , Monitoring, Physiologic
8.
Philos Trans A Math Phys Eng Sci ; 376(2126)2018 Aug 13.
Article in English | MEDLINE | ID: mdl-29986912

ABSTRACT

Redundancy: it is a word heavy with connotations of lacking usefulness. I often hear that the rationale for not using the continuous wavelet transform (CWT)-even when it appears most appropriate for the problem at hand-is that it is 'redundant'. Sometimes the conversation ends there, as if self-explanatory. However, in the context of the CWT, 'redundant' is not a pejorative term, it simply refers to a less compact form used to represent the information within the signal. The benefit of this new form-the CWT-is that it allows for intricate structural characteristics of the signal information to be made manifest within the transform space, where it can be more amenable to study: resolution over redundancy. Once the signal information is in CWT form, a range of powerful analysis methods can then be employed for its extraction, interpretation and/or manipulation. This theme issue is intended to provide the reader with an overview of the current state of the art of CWT analysis methods from across a wide range of numerate disciplines, including fluid dynamics, structural mechanics, geophysics, medicine, astronomy and finance.This article is part of the theme issue 'Redundancy rules: the continuous wavelet transform comes of age'.

9.
J Clin Monit Comput ; 32(5): 871-880, 2018 Oct.
Article in English | MEDLINE | ID: mdl-29124562

ABSTRACT

The robust monitoring of heart rate from the video-photoplethysmogram (video-PPG) during challenging conditions requires new analysis techniques. The work reported here extends current research in this area by applying a motion tolerant algorithm to extract high quality video-PPGs from a cohort of subjects undergoing marked heart rate changes during a hypoxic challenge, and exhibiting a full range of skin pigmentation types. High uptimes in reported video-based heart rate (HRvid) were targeted, while retaining high accuracy in the results. Ten healthy volunteers were studied during a double desaturation hypoxic challenge. Video-PPGs were generated from the acquired video image stream and processed to generate heart rate. HRvid was compared to the pulse rate posted by a reference pulse oximeter device (HRp). Agreement between video-based heart rate and that provided by the pulse oximeter was as follows: Bias = - 0.21 bpm, RMSD = 2.15 bpm, least squares fit gradient = 1.00 (Pearson R = 0.99, p < 0.0001), with a 98.78% reporting uptime. The difference between the HRvid and HRp exceeded 5 and 10 bpm, for 3.59 and 0.35% of the reporting time respectively, and at no point did these differences exceed 25 bpm. Excellent agreement was found between the HRvid and HRp in a study covering the whole range of skin pigmentation types (Fitzpatrick scales I-VI), using standard room lighting and with moderate subject motion. Although promising, further work should include a larger cohort with multiple subjects per Fitzpatrick class combined with a more rigorous motion and lighting protocol.


Subject(s)
Heart Rate/physiology , Hemodynamic Monitoring/methods , Hypoxia/physiopathology , Photoplethysmography/methods , Skin Pigmentation/physiology , Adult , Algorithms , Female , Healthy Volunteers , Hemodynamic Monitoring/statistics & numerical data , Humans , Least-Squares Analysis , Male , Oximetry/statistics & numerical data , Photoplethysmography/statistics & numerical data , Signal Processing, Computer-Assisted , Video Recording/methods , Young Adult
10.
Annu Int Conf IEEE Eng Med Biol Soc ; 2017: 734-737, 2017 Jul.
Article in English | MEDLINE | ID: mdl-29059977

ABSTRACT

The extraction of heart rate from a video-based biosignal during motion using a novel wavelet-based ensemble averaging method is described. Running Wavelet Archetyping (RWA) allows for the enhanced extraction of pulse information from the time-frequency representation, from which a video-based heart rate (HRvid) can be derived. This compares favorably to a reference heart rate derived from a pulse oximeter.


Subject(s)
Running , Algorithms , Heart Rate , Oximetry , Photoplethysmography
13.
Anesth Analg ; 125(3): 860-873, 2017 09.
Article in English | MEDLINE | ID: mdl-28333706

ABSTRACT

BACKGROUND: The physiologic information contained in the video photoplethysmogram is well documented. However, extracting this information during challenging conditions requires new analysis techniques to capture and process the video image streams to extract clinically useful physiologic parameters. We hypothesized that heart rate, respiratory rate, and oxygen saturation trending can be evaluated accurately from video information during acute hypoxia. METHODS: Video footage was acquired from multiple desaturation episodes during a porcine model of acute hypoxia using a standard visible light camera. A novel in-house algorithm was used to extract photoplethysmographic cardiac pulse and respiratory information from the video image streams and process it to extract a continuously reported video-based heart rate (HRvid), respiratory rate (RRvid), and oxygen saturation (SvidO2). This information was then compared with HR and oxygen saturation references from commercial pulse oximetry and the known rate of respiration from the ventilator. RESULTS: Eighty-eight minutes of data were acquired during 16 hypoxic episodes in 8 animals. A linear mixed-effects regression showed excellent responses relative to a nonhypoxic reference signal with slopes of 0.976 (95% confidence interval [CI], 0.973-0.979) for HRvid; 1.135 (95% CI, 1.101-1.168) for RRvid, and 0.913 (95% CI, 0.905-0.920) for video-based oxygen saturation. These results were obtained while maintaining continuous uninterrupted vital sign monitoring for the entire study period. CONCLUSIONS: Video-based monitoring of HR, RR, and oxygen saturation may be performed with reasonable accuracy during acute hypoxic conditions in an anesthetized porcine hypoxia model using standard visible light camera equipment. However, the study was conducted during relatively low motion. A better understanding of the effect of motion and the effect of ambient light on the video photoplethysmogram may help refine this monitoring technology for use in the clinical environment.


Subject(s)
Heart Rate/physiology , Hypoxia/physiopathology , Monitoring, Physiologic/methods , Oximetry/methods , Oxygen Consumption/physiology , Respiratory Rate/physiology , Video Recording/methods , Animals , Swine
14.
Med Eng Phys ; 41: 9-18, 2017 03.
Article in English | MEDLINE | ID: mdl-28126420

ABSTRACT

The potential for a simple, non-invasive measure of respiratory effort based on the pulse oximeter signal - the photoplethysmogram or 'pleth' - was investigated in a pilot study. Several parameters were developed based on a variety of manifestations of respiratory effort in the signal, including modulation changes in amplitude, baseline, frequency and pulse transit times, as well as distinct baseline signal shifts. Thirteen candidate parameters were investigated using data from healthy volunteers. Each volunteer underwent a series of controlled respiratory effort maneuvers at various set flow resistances and respiratory rates. Six oximeter probes were tested at various body sites. In all, over three thousand pleth-based effort-airway pressure (EP) curves were generated across the various airway constrictions, respiratory efforts, respiratory rates, subjects, probe sites, and the candidate parameters considered. Regression analysis was performed to determine the existence of positive monotonic relationships between the respiratory effort parameters and resulting airway pressures. Six of the candidate parameters investigated exhibited a distinct positive relationship (p<0.001 across all probes tested) with increasing upper airway pressure repeatable across the range of respiratory rates and flow constrictions studied. These were: the three fundamental modulations in amplitude (AM-Effort), baseline (BM-Effort) and respiratory sinus arrhythmia (RSA-Effort); two pulse transit time modulations - one using a pulse oximeter probe and an ECG (P2E-Effort) and the other using two pulse oximeter probes placed at different peripheral body sites (P2-Effort); and baseline shifts in heart rate, (BL-HR-Effort). In conclusion, a clear monotonic relationship was found between several pleth-based parameters and imposed respiratory loadings at the mouth across a range of respiratory rates and flow constrictions. The results suggest that the pleth may provide a measure of changing upper airway dynamics indicative of the effort to breathe.


Subject(s)
Photoplethysmography , Respiration , Adult , Algorithms , Female , Humans , Male , Pilot Projects , Pressure , Young Adult
15.
Anesth Analg ; 124(4): 1153-1159, 2017 04.
Article in English | MEDLINE | ID: mdl-28099286

ABSTRACT

BACKGROUND: Intermittent measurement of respiratory rate via observation is routine in many patient care settings. This approach has several inherent limitations that diminish the clinical utility of these measurements because it is intermittent, susceptible to human error, and requires clinical resources. As an alternative, a software application that derives continuous respiratory rate measurement from a standard pulse oximeter has been developed. We sought to determine the performance characteristics of this new technology by comparison with clinician-reviewed capnography waveforms in both healthy subjects and hospitalized patients in a low-acuity care setting. METHODS: Two independent observational studies were conducted to validate the performance of the Medtronic Nellcor Respiration Rate Software application. One study enrolled 26 healthy volunteer subjects in a clinical laboratory, and a second multicenter study enrolled 53 hospitalized patients. During a 30-minute study period taking place while participants were breathing spontaneously, pulse oximeter and nasal/oral capnography waveforms were collected. Pulse oximeter waveforms were processed to determine respiratory rate via the Medtronic Nellcor Respiration Rate Software. Capnography waveforms reviewed by a clinician were used to determine the reference respiratory rate. RESULTS: A total of 23,243 paired observations between the pulse oximeter-derived respiratory rate and the capnography reference method were collected and examined. The mean reference-based respiratory rate was 15.3 ± 4.3 breaths per minute with a range of 4 to 34 breaths per minute. The Pearson correlation coefficient between the Medtronic Nellcor Respiration Rate Software values and the capnography reference respiratory rate is reported as a linear correlation, R, as 0.92 ± 0.02 (P < .001), whereas Lin's concordance correlation coefficient indicates an overall agreement of 0.85 ± 0.04 (95% confidence interval [CI] +0.76; +0.93) (healthy volunteers: 0.94 ± 0.02 [95% CI +0.91; +0.97]; hospitalized patients: 0.80 ± 0.06 [95% CI +0.68; +0.92]). The mean bias of the Medtronic Nellcor Respiration Rate Software was 0.18 breaths per minute with a precision (SD) of 1.65 breaths per minute (healthy volunteers: 0.37 ± 0.78 [95% limits of agreement: -1.16; +1.90] breaths per minute; hospitalized patients: 0.07 ± 1.99 [95% limits of agreement: -3.84; +3.97] breaths per minute). The root mean square deviation was 1.35 breaths per minute (healthy volunteers: 0.81; hospitalized patients: 1.60). CONCLUSIONS: These data demonstrate the performance of the Medtronic Nellcor Respiration Rate Software in healthy subjects and patients hospitalized in a low-acuity care setting when compared with clinician-reviewed capnography. The observed performance of this technology suggests that it may be a useful adjunct to continuous pulse oximetry monitoring by providing continuous respiratory rate measurements. The potential patient safety benefit of using combined continuous pulse oximetry and respiratory rate monitoring warrants assessment.


Subject(s)
Capnography/standards , Hospitalization/trends , Oximetry/standards , Respiratory Rate/physiology , Adult , Capnography/methods , Female , Humans , Male , Middle Aged , Oximetry/methods , Photoplethysmography/methods , Photoplethysmography/standards , Reproducibility of Results
16.
J Clin Monit Comput ; 31(4): 727-737, 2017 Aug.
Article in English | MEDLINE | ID: mdl-27496051

ABSTRACT

Cerebral blood flow (CBF) is regulated over a range of systemic blood pressures by the cerebral autoregulation (CA) control mechanism. This range lies within the lower and upper limits of autoregulation (LLA, ULA), beyond which blood pressure drives CBF, and CA function is considered impaired. A standard method to determine autoregulation limits noninvasively using NIRS technology is via the COx measure: a moving correlation index between mean arterial pressure and regional oxygen saturation. In the intact region, there should be no correlation between these variables whereas in the impaired region, the correlation index should approximate unity. In practice, however, the data may be noisy and/or the intact region may often exhibit a slightly positive relationship. This positive relationship may render traditional autoregulation limit calculations difficult to perform, resulting in the need for manual interpretation of the data using arbitrary thresholds. Further, the underlying mathematics of the technique are asymmetric in terms of the results produced for impaired and intact regions and are, in fact, not computable for the ideal case within the intact region. In this work, we propose a novel gradient adjustment method (GACOx) to enhance the differences in COx values observed in the intact and impaired regions. Results from a porcine model (N = 8) are used to demonstrate that GACOx is successful in determining LLA values where traditional methods fail. It is shown that the derived GACOx indices exhibit a mean difference between the intact/impaired regions of 1.54 ± 0.26 (mean ± SD), compared to 0.14 ± 0.10 for the traditional COx method. The GACOx effectively polarizes the COx data in order to better differentiate the intact and impaired zones and, in doing so, makes the determination of the LLA and ULA points a simpler and more consistent task. The method lends itself to the automation of the robust determination of autoregulation zone limits.


Subject(s)
Blood Pressure , Cerebrovascular Circulation/physiology , Homeostasis , Algorithms , Animals , Arterial Pressure , Blood Flow Velocity , Brain/physiology , Electronic Data Processing , Female , Models, Theoretical , Oxygen/chemistry , Reproducibility of Results , Retrospective Studies , Signal Processing, Computer-Assisted , Spectroscopy, Near-Infrared , Swine
17.
Healthc Technol Lett ; 3(2): 111-5, 2016 Jun.
Article in English | MEDLINE | ID: mdl-27382479

ABSTRACT

A novel method of extracting heart rate and oxygen saturation from a video-based biosignal is described. The method comprises a novel modular continuous wavelet transform approach which includes: performing the transform, undertaking running wavelet archetyping to enhance the pulse information, extraction of the pulse ridge time-frequency information [and thus a heart rate (HRvid) signal], creation of a wavelet ratio surface, projection of the pulse ridge onto the ratio surface to determine the ratio of ratios from which a saturation trending signal is derived, and calibrating this signal to provide an absolute saturation signal (SvidO2). The method is illustrated through its application to a video photoplethysmogram acquired during a porcine model of acute desaturation. The modular continuous wavelet transform-based approach is advocated by the author as a powerful methodology to deal with noisy, non-stationary biosignals in general.

18.
IEEE Trans Biomed Eng ; 63(11): 2441-2444, 2016 11.
Article in English | MEDLINE | ID: mdl-26890527

ABSTRACT

A novel pulse transit time proxy measurement, slope transit time (STT), is proposed in this letter. STT is based on geometrical considerations of the arriving photoplethysmographic cardiac waveform and its computation requires only the measurement of a single point on each cardiac beat arriving at the peripheral site. This novel transit time is explained conceptually and its implementation illustrated through its application to signals from respiratory effort, Müller maneuver, and obstructive sleep apnea trials.


Subject(s)
Blood Pressure/physiology , Photoplethysmography/methods , Pulse Wave Analysis/methods , Signal Processing, Computer-Assisted , Heart Rate/physiology , Humans , Sleep Apnea, Obstructive/physiopathology
19.
J Clin Monit Comput ; 30(5): 595-602, 2016 Oct.
Article in English | MEDLINE | ID: mdl-26377021

ABSTRACT

DPOP is a measure of the strength of respiratory modulations present in the pulse oximetry photoplethysmogram (pleth) waveform. It has been proposed as a non-invasive parameter for the prediction of the response to volume expansion in hypovolemic patients. The effect of resistive breathing on the DPOP parameter was studied to determine whether it may have an adjunct use as a measure of respiratory effort. Healthy volunteers were tasked to breathe at fixed respiratory rates over a range of airway resistances generated by a flow resistor inserted within a mouthpiece. Changes in respiratory efforts, effected by the subjects and measured as airway pressures at the mouth, were compared to DPOP values derived from a finger pulse oximeter probe. It was found that the increased effort to breathe manifests itself as an associated increase in DPOP. Further, a relationship between DPOP and percent modulation of the pleth waveform was observed. A version of the DPOP algorithm that corrects for low perfusion was implemented which resulted in an improved relationship between DPOP and PPV. Although a limited cohort of seven volunteers was used, the results suggest that DPOP may be useful as a respiratory effort parameter, given that the fluid level of the patient is maintained at a constant level over the period of analysis.


Subject(s)
Photoplethysmography/methods , Respiration , Respiratory Rate , Algorithms , Arterial Pressure , Cohort Studies , Fluid Therapy/methods , Healthy Volunteers , Hemodynamics , Humans , Hypovolemia , Monitoring, Intraoperative/methods , Oximetry/methods , Perfusion , Signal Processing, Computer-Assisted
20.
J Clin Monit Comput ; 30(5): 661-8, 2016 Oct.
Article in English | MEDLINE | ID: mdl-26377023

ABSTRACT

Cerebral blood flow is regulated over a range of systemic blood pressures through the cerebral autoregulation (CA) control mechanism. The COx measure based on near infrared spectroscopy (NIRS) has been proposed as a suitable technique for the analysis of CA as it is non-invasive and provides a simpler acquisition methodology than other methods. The COx method relies on data binning and thresholding to determine the change between intact and impaired autoregulation zones. In the work reported here we have developed a novel method of differentiating the intact and impaired CA blood pressure regimes using clustering methods on unbinned data. K-means and Gaussian mixture model algorithms were used to analyse a porcine data set. The determination of the lower limit of autoregulation (LLA) was compared to a traditional binned data approach. Good agreement was found between the methods. The work highlights the potential application of using data clustering tools in the monitoring of CA function.


Subject(s)
Cerebrovascular Circulation/physiology , Cluster Analysis , Data Interpretation, Statistical , Algorithms , Anesthetics , Animals , Arterial Pressure/physiology , Blood Flow Velocity/physiology , Blood Pressure/physiology , Catheterization , Female , Homeostasis , Humans , Hypoxia , Lung/physiology , Male , Monitoring, Physiologic , Normal Distribution , Regression Analysis , Reproducibility of Results , Shock, Hemorrhagic/physiopathology , Spectroscopy, Near-Infrared , Swine
SELECTION OF CITATIONS
SEARCH DETAIL
...