Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
J Immunother Cancer ; 11(9)2023 09.
Article in English | MEDLINE | ID: mdl-37758652

ABSTRACT

BACKGROUND: Tumor-specific mutated proteins can create immunogenic non-self, mutation-containing 'neoepitopes' that are attractive targets for adoptive T-cell therapies. To avoid the complexity of defining patient-specific, private neoepitopes, there has been major interest in targeting common shared mutations in driver genes using off-the-shelf T-cell receptors (TCRs) engineered into autologous lymphocytes. However, identifying the precise naturally processed neoepitopes to pursue is a complex and challenging process. One method to definitively demonstrate whether an epitope is presented at the cell surface is to elute peptides bound to a specific major histocompatibility complex (MHC) allele and analyze them by mass spectrometry (MS). These MS data can then be prospectively applied to isolate TCRs specific to the neoepitope. METHODS: We created mono-allelic cell lines expressing one class I HLA allele and one common mutated oncogene in order to eliminate HLA deconvolution requirements and increase the signal of recovered peptides. MHC-bound peptides on the surface of these cell lines were immunoprecipitated, purified, and analyzed using liquid chromatography-tandem mass spectrometry, producing a list of mutation-containing minimal epitopes. To validate the immunogenicity of these neoepitopes, HLA-transgenic mice were vaccinated using the minimal peptides identified by MS in order to generate neoepitope-reactive TCRs. Specificity of these candidate TCRs was confirmed by peptide titration and recognition of transduced targets. RESULTS: We identified precise neoepitopes derived from mutated isoforms of KRAS, EGFR, BRAF, and PIK3CA presented by HLA-A*03:01 and/or HLA-A*11:01 across multiple biological replicates. From our MS data, we were able to successfully isolate murine TCRs that specifically recognize four HLA-A*11:01 restricted neoepitopes (KRAS G13D, PIK3CA E545K, EGFR L858R and BRAF V600E) and three HLA-A*03:01 restricted neoepitopes (KRAS G12V, EGFR L858R and BRAF V600E). CONCLUSIONS: Our data show that an MS approach can be used to demonstrate which shared oncogene-derived neoepitopes are processed and presented by common HLA alleles, and those MS data can rapidly be used to develop TCRs against these common tumor-specific antigens. Although further characterization of these neoepitope-specific murine TCRs is required, ultimately, they have the potential to be used clinically for adoptive cell therapy.


Subject(s)
Neoplasms , Proto-Oncogene Proteins B-raf , Humans , Mice , Animals , Proto-Oncogene Proteins p21(ras) , Antigens, Neoplasm , Histocompatibility Antigens , Receptors, Antigen, T-Cell/genetics , Peptides , Epitopes , Neoplasm Proteins , HLA-A Antigens , ErbB Receptors
2.
Mol Cell Proteomics ; 20: 100136, 2021.
Article in English | MEDLINE | ID: mdl-34391887

ABSTRACT

Immune checkpoint inhibitors and adoptive lymphocyte transfer-based therapies have shown great therapeutic potential in cancers with high tumor mutational burden (TMB), such as melanoma, but not in cancers with low TMB, such as mutant epidermal growth factor receptor (EGFR)-driven lung adenocarcinoma. Precision immunotherapy is an unmet need for most cancers, particularly for cancers that respond inadequately to immune checkpoint inhibitors. Here, we employed large-scale MS-based proteogenomic profiling to identify potential immunogenic human leukocyte antigen (HLA) class I-presented peptides in melanoma and EGFR-mutant lung adenocarcinoma. Similar numbers of peptides were identified from both tumor types. Cell line and patient-specific databases (DBs) were constructed using variants identified from whole-exome sequencing. A de novo search algorithm was used to interrogate the HLA class I immunopeptidome MS data. We identified 12 variant peptides and several classes of tumor-associated antigen-derived peptides. We constructed a cancer germ line (CG) antigen DB with 285 antigens. This allowed us to identify 40 class I-presented CG antigen-derived peptides. The class I immunopeptidome comprised more than 1000 post-translationally modified (PTM) peptides representing 58 different PTMs, underscoring the critical role PTMs may play in HLA binding. Finally, leveraging de novo search algorithm and an annotated long noncoding RNA (lncRNA) DB, we developed a novel lncRNA-encoded peptide discovery pipeline to identify 44 lncRNA-derived peptides that are presented by class I. We validated tandem MS spectra of select variant, CG antigen, and lncRNA-derived peptides using synthetic peptides and performed HLA class I-binding assays to demonstrate binding to class I proteins. In summary, we provide direct evidence of HLA class I presentation of a large number of variant and tumor-associated peptides in both low and high TMB cancer. These results can potentially be useful for precision immunotherapies, such as vaccine or adoptive cell therapies in melanoma and EGFR-mutant lung cancers.


Subject(s)
Adenocarcinoma of Lung/metabolism , Antigens, Neoplasm/metabolism , Histocompatibility Antigens Class I/metabolism , Lung Neoplasms/metabolism , Melanoma/metabolism , Peptides/metabolism , Adenocarcinoma of Lung/genetics , Aged , Antigens, Neoplasm/genetics , Cell Line, Tumor , ErbB Receptors/genetics , Histocompatibility Antigens Class I/genetics , Humans , Lung Neoplasms/genetics , Male , Melanoma/genetics , Mutation , Peptides/genetics , Proteogenomics
3.
Gene ; 642: 188-198, 2018 Feb 05.
Article in English | MEDLINE | ID: mdl-29154869

ABSTRACT

DNA binding domains (DBDs) have been used with great success to impart targeting capabilities to a variety of proteins creating highly useful genomic tools. We evaluated the ability of five types of DBDs and strategies (AAV Rep proteins, Cre, TAL effectors, zinc finger proteins, and Cas9/gRNA system) to target the L1 ORF2 protein to drive retrotransposition of Alu inserts to specific sequences in the human genome. First, we find that the L1 ORF2 protein tolerates the addition of protein domains both at the amino- and carboxy-terminus. Although in some instances retrotransposition efficiencies slightly diminished, all fusion proteins containing an intact ORF2 were capable of driving retrotransposition. Second, the stability of individual ORF2 fusion proteins varies and difficult to predict. Third, DBDs that require the formation of multimers for target recognition are unlikely to modify targeting of ORF2p-driven insertions. Fourth, the more components needed to assemble into a complex to drive targeted retrotransposition, the less likely the strategy will increase targeted insertions. Fifth, abundance of target sequences present in the genome will likely dictate the effectiveness and efficiency of targeted insertions. Lastly, the cleavage capabilities of Cas9 (or a Cas9 nickase variant) are unable to substitute for the L1 ORF2 endonuclease domain functions, suggestive that the endonuclease domain has alternate functions needed for retrotransposition. From these studies, we conclude that the most critical component for the modification of the human L1 ORF2 protein to drive targeted insertions is the selection of the DBD due to the varying functional requirements and impacts on protein stability.


Subject(s)
DNA-Binding Proteins/chemistry , Endonucleases/chemistry , Endonucleases/genetics , RNA-Directed DNA Polymerase/chemistry , RNA-Directed DNA Polymerase/genetics , HeLa Cells , Humans , Mutagenesis, Insertional , Protein Domains , Retroelements
4.
PLoS One ; 11(3): e0151367, 2016.
Article in English | MEDLINE | ID: mdl-26966913

ABSTRACT

Heavy metals such as cadmium, arsenic and nickel are classified as carcinogens. Although the precise mechanism of carcinogenesis is undefined, heavy metal exposure can contribute to genetic damage by inducing double strand breaks (DSBs) as well as inhibiting critical proteins from different DNA repair pathways. Here we take advantage of two previously published culture assay systems developed to address mechanistic aspects of DNA repair to evaluate the effects of heavy metal exposures on competing DNA repair outcomes. Our results demonstrate that exposure to heavy metals significantly alters how cells repair double strand breaks. The effects observed are both specific to the particular metal and dose dependent. Low doses of NiCl2 favored resolution of DSBs through homologous recombination (HR) and single strand annealing (SSA), which were inhibited by higher NiCl2 doses. In contrast, cells exposed to arsenic trioxide preferentially repaired using the "error prone" non-homologous end joining (alt-NHEJ) while inhibiting repair by HR. In addition, we determined that low doses of nickel and cadmium contributed to an increase in mutagenic recombination-mediated by Alu elements, the most numerous family of repetitive elements in humans. Sequence verification confirmed that the majority of the genetic deletions were the result of Alu-mediated non-allelic recombination events that predominantly arose from repair by SSA. All heavy metals showed a shift in the outcomes of alt-NHEJ repair with a significant increase of non-templated sequence insertions at the DSB repair site. Our data suggest that exposure to heavy metals will alter the choice of DNA repair pathway changing the genetic outcome of DSBs repair.


Subject(s)
DNA Breaks, Double-Stranded/drug effects , DNA Repair/drug effects , Metals, Heavy/pharmacology , Cell Line, Tumor , Dose-Response Relationship, Drug , Genes, Reporter/genetics , Green Fluorescent Proteins/genetics , Humans , Recombination, Genetic/drug effects
5.
Methods Mol Biol ; 1400: 183-201, 2016.
Article in English | MEDLINE | ID: mdl-26895055

ABSTRACT

Mobile element activity is of great interest due to its impact on genomes. However, the types of mobile elements that inhabit any given genome are remarkably varied. Among the different varieties of mobile elements, the Short Interspersed Elements (SINEs) populate many genomes, including many mammalian species. Although SINEs are parasites of Long Interspersed Elements (LINEs), SINEs have been highly successful in both the primate and rodent genomes. When comparing copy numbers in mammals, SINEs have been vastly more successful than other nonautonomous elements, such as the retropseudogenes and SVA. Interestingly, in the human genome the copy number of Alu (a primate SINE) outnumbers LINE-1 (L1) copies 2 to 1. Estimates suggest that the retrotransposition rate for Alu is tenfold higher than LINE-1 with about 1 insert in every twenty births. Furthermore, Alu-induced mutagenesis is responsible for the majority of the documented instances of human retroelement insertion-induced disease. However, little is known on what contributes to these observed differences between SINEs and LINEs. The development of an assay to monitor SINE retrotransposition in culture has become an important tool for the elucidation of some of these differences. In this chapter, we present details of the SINE retrotransposition assay and the recovery of de novo inserts. We also focus on the nuances that are unique to the SINE assay.


Subject(s)
Short Interspersed Nucleotide Elements , Alu Elements , Animals , Cloning, Molecular , Gene Expression , Gene Expression Regulation , Genes, Reporter , Humans , Open Reading Frames , Transfection
6.
Biol Trace Elem Res ; 166(1): 24-33, 2015 Jul.
Article in English | MEDLINE | ID: mdl-25774044

ABSTRACT

Maintenance of genomic integrity is critical for cellular homeostasis and survival. The active transposable elements (TEs) composed primarily of three mobile element lineages LINE-1, Alu, and SVA comprise approximately 30% of the mass of the human genome. For the past 2 decades, studies have shown that TEs significantly contribute to genetic instability and that TE-caused damages are associated with genetic diseases and cancer. Different environmental exposures, including several heavy metals, influence how TEs interact with its host genome increasing their negative impact. This mini-review provides some basic knowledge on TEs, their contribution to disease, and an overview of the current knowledge on how heavy metals influence TE-mediated damage.


Subject(s)
DNA Damage , DNA Transposable Elements/genetics , Environmental Exposure/adverse effects , Genomic Instability/drug effects , Metals, Heavy/toxicity , Retroelements/genetics , Animals , Epigenesis, Genetic , Genomic Instability/genetics , Humans , Mutagenesis, Insertional
7.
Neurobiol Learn Mem ; 118: 167-77, 2015 Feb.
Article in English | MEDLINE | ID: mdl-25555360

ABSTRACT

Females experience depression, posttraumatic stress disorder (PTSD), and anxiety disorders at approximately twice the rate of males, but the mechanisms underlying this difference remain undefined. The effect of sex hormones on neural substrates presents a possible mechanism. We investigated the effect of ovariectomy at two ages, before puberty and in adulthood, and 17ß-estradiol (E2) replacement administered chronically in drinking water on anxiety level, fear memory formation, and extinction. Based on previous studies, we hypothesized that estradiol replacement would impair fear memory formation and enhance extinction rate. Females, age 4 weeks and 10 weeks, were divided randomly into 4 groups; sham surgery, OVX, OVX+low E2 (200nM), and OVX+high E2 (1000nM). Chronic treatment with high levels of E2 significantly increased anxiety levels measured in the elevated plus maze. In both age groups, high levels of E2 significantly increased contextual fear memory but had no effect on cued fear memory. In addition, high E2 decreased the rate of extinction in both ages. Finally, catechol-O-methyltransferase (COMT) is important for regulation of catecholamine levels, which play a role in fear memory formation and extinction. COMT expression in the hippocampus was significantly reduced by high E2 replacement, implying increased catecholamine levels in the hippocampus of high E2 mice. These results suggest that estradiol enhanced fear memory formation, and inhibited fear memory extinction, possibly stabilizing the fear memory in female mice. This study has implications for a neurobiological mechanism for PTSD and anxiety disorders.


Subject(s)
Anxiety/physiopathology , Catechol O-Methyltransferase/metabolism , Estradiol/physiology , Extinction, Psychological/physiology , Fear/physiology , Memory/physiology , Animals , Estradiol/administration & dosage , Extinction, Psychological/drug effects , Fear/drug effects , Female , Gene Expression , Hippocampus/drug effects , Hippocampus/metabolism , Memory/drug effects , Mice , Ovariectomy , Prefrontal Cortex/drug effects , Prefrontal Cortex/metabolism
8.
Curr Opin Virol ; 3(6): 639-45, 2013 Dec.
Article in English | MEDLINE | ID: mdl-24080407

ABSTRACT

Alu elements are ∼300bp sequences that have amplified via an RNA intermediate leading to the accumulation of over 1 million copies in the human genome. Although a few of the copies are active, Alu germline activity is the highest of all human retrotransposons and does significantly contribute to genetic disease and population diversity. There are two basic mechanisms by which Alu elements contribute to disease: through insertional mutagenesis and as a large source of repetitive sequences that contribute to nonallelic homologous recombination (NAHR) that cause genetic deletions and duplications.


Subject(s)
Alu Elements , Genome, Human , Genomic Instability , Disease/genetics , Gene Deletion , Gene Duplication , Homologous Recombination , Humans , Mutagenesis, Insertional
SELECTION OF CITATIONS
SEARCH DETAIL
...