Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
Trials ; 22(1): 3, 2021 Jan 04.
Article in English | MEDLINE | ID: mdl-33397457

ABSTRACT

OBJECTIVES: To investigate the efficacy and safety of repurposed antiprotozoal and antiretroviral drugs, nitazoxanide and atazanavir/ritonavir, in shortening the time to clinical improvement and achievement of SARS-CoV-2 polymerase chain reaction (PCR) negativity in patients diagnosed with moderate to severe COVID-19. TRIAL DESIGN: This is a pilot phase 2, multicentre 2-arm (1:1 ratio) open-label randomised controlled trial. PARTICIPANTS: Patients with confirmed COVID-19 diagnosis (defined as SARS-CoV-2 PCR positive nasopharyngeal swab) will be recruited from four participating isolation and treatment centres in Nigeria: two secondary care facilities (Infectious Diseases Hospital, Olodo, Ibadan, Oyo State and Specialist State Hospital, Asubiaro, Osogbo, Osun State) and two tertiary care facilities (Obafemi Awolowo University Teaching Hospitals Complex, Ile-Ife, Osun State and Olabisi Onabanjo University Teaching Hospital, Sagamu, Ogun State). These facilities have a combined capacity of 146-bed COVID-19 isolation and treatment ward. INCLUSION CRITERIA: Confirmation of SARS-CoV-2 infection by PCR test within two days before randomisation and initiation of treatment, age bracket of 18 and 75 years, symptomatic, able to understand study information and willingness to participate. Exclusion criteria include the inability to take orally administered medication or food, known hypersensitivity to any of the study drugs, pregnant or lactating, current or recent (within 24 hours of enrolment) treatment with agents with actual or likely antiviral activity against SARS-CoV-2, concurrent use of agents with known or suspected interaction with study drugs, and requiring mechanical ventilation at screening. INTERVENTION AND COMPARATOR: Participants in the intervention group will receive 1000 mg of nitazoxanide twice daily orally and 300/100 mg of atazanvir/ritonavir once daily orally in addition to standard of care while participants in the control group will receive only standard of care. Standard of care will be determined by the physician at the treatment centre in line with the current guidelines for clinical management of COVID-19 in Nigeria. MAIN OUTCOME MEASURES: Main outcome measures are: (1) Time to clinical improvement (defined as time from randomisation to either an improvement of two points on a 10-category ordinal scale (developed by the WHO Working Group on the Clinical Characterisation and Management of COVID-19 infection) or discharge from the hospital, whichever came first); (2) Proportion of participants with SARS-CoV-2 polymerase chain reaction (PCR) negative result at days 2, 4, 6, 7, 14 and 28; (3) Temporal patterns of SARS-CoV-2 viral load on days 2, 4, 6, 7, 14 and 28 quantified by RT-PCR from saliva of patients receiving standard of care alone versus standard of care plus study drugs. RANDOMISATION: Allocation of participants to study arm is randomised within each site with a ratio 1:1 based on randomisation sequences generated centrally at Obafemi Awolowo University. The model was implemented in REDCap and includes stratification by age, gender, viral load at diagnosis and presence of relevant comorbidities. BLINDING: None, this is an open-label trial. NUMBER TO BE RANDOMISED (SAMPLE SIZE): 98 patients (49 per arm). TRIAL STATUS: Regulatory approval was issued by the National Agency for Food and Drug Administration and Control on 06 October 2020 (protocol version number is 2.1 dated 06 August 2020). Recruitment started on 9 October 2020 and is anticipated to end before April 2021. TRIAL REGISTRATION: The trial has been registered on ClinicalTrials.gov (July 7, 2020), with identifier number NCT04459286 and on Pan African Clinical Trials Registry (August 13, 2020), with identifier number PACTR202008855701534 . FULL PROTOCOL: The full protocol is attached as an additional file which will be made available on the trial website. In the interest of expediting dissemination of this material, the traditional formatting has been eliminated, and this letter serves as a summary of the key elements in the full protocol. The study protocol has been reported in accordance with the Standard Protocol Items: Recommendations for Clinical Interventional Trials (SPIRIT) guidelines (Additional file 2).


Subject(s)
Antiviral Agents/administration & dosage , Atazanavir Sulfate/administration & dosage , COVID-19 Drug Treatment , Ritonavir/administration & dosage , Thiazoles/administration & dosage , Administration, Oral , Adolescent , Adult , Aged , Antiviral Agents/adverse effects , Atazanavir Sulfate/adverse effects , COVID-19/diagnosis , COVID-19/virology , COVID-19 Nucleic Acid Testing , Clinical Trials, Phase II as Topic , Drug Administration Schedule , Drug Combinations , Drug Repositioning , Drug Therapy, Combination/adverse effects , Drug Therapy, Combination/methods , Female , Humans , Male , Middle Aged , Multicenter Studies as Topic , Nigeria , Nitro Compounds , Pilot Projects , RNA, Viral/isolation & purification , Randomized Controlled Trials as Topic , Ritonavir/adverse effects , SARS-CoV-2/drug effects , SARS-CoV-2/isolation & purification , Severity of Illness Index , Standard of Care , Thiazoles/adverse effects , Treatment Outcome , Viral Load/drug effects , Young Adult
2.
ACS Omega ; 5(48): 31306-31313, 2020 Dec 08.
Article in English | MEDLINE | ID: mdl-33324841

ABSTRACT

Tuberculosis (TB) remains a foremost poverty-related disease with a high rate of mortality despite global immunization with Bacille Calmette-Guérin (BCG). Several adjuvanted recombinant proteins are in clinical development for TB to protect against the disease in infants and adults. Nevertheless, simple mixing of adjuvants with antigens may not be optimal for enhancing the immune response due to poor association. Hence, co-delivery of adjuvants with antigens has been advocated for improved immune response. This report, therefore, presents a strategy of using chemical conjugation to co-deliver an adjuvanted recombinant protein TB vaccine (ID93 + GLA-LSQ). Chemical conjugation involving glutaraldehyde (GA) or 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide hydrochloride (EDC) was used to associate the antigen (ID93) to the modified liposome (mGLA-LSQ). The physicochemical stability of the formulations was evaluated using high-performance liquid chromatography (HPLC) (adjuvant content), dynamic light scattering (DLS, particle size analysis), and sodium dodecyl sulfate-polyacrylamide gel (SDS) electrophoresis (protein analysis). The bioactivity was assessed by cytokine stimulation using fresh whole blood from 10 healthy donors. The conjugates of ID93 + mGLA_LSQ maintained liposomal and protein integrity with the two protein chemistries. The GLA and QS21 content of the vaccine were also stable for 3 months. However, only the glutaraldehyde conjugates provoked significant secretion of interleukin-2 (210.4 ± 11.45 vs 166.7 ± 9.15; p = 0.0059), interferon-gamma (210.5 ± 14.79 vs 144.1 ± 4.997; p = 0.0011), and tumor necrosis factor alpha (2075 ± 46.8 vs 1456 ± 144.8; p = 0.0082) compared to simple mixing. Conjugation of recombinant protein (ID93) to the liposome (mGLA_LSQ) through chemical conjugation resulted in a stable vaccine formulation, which could facilitate co-delivery of the subunit vaccine to promote a robust immune response.

3.
Pharmacogenet Genomics ; 30(5): 96-106, 2020 07.
Article in English | MEDLINE | ID: mdl-32209837

ABSTRACT

BACKGROUND: Coadministration of artemether-lumefantrine and efavirenz has been shown to result in significant interactions. The influence of functional genetic polymorphisms in selected CYPs on the magnitude of this interaction was investigated in pregnant and nonpregnant adults. METHOD: A standard 3-day regimen of artemether-lumefantrine was administered to each patient on steady-state efavirenz-based antiretroviral therapy (ART). Pharmacokinetic parameters were obtained from intensive plasma concentration-time data. Genotyping data were tested for compliance with Hardy-Weinberg equilibrium by Chi-square test. Linear regressions, Mann-Whitney U-test or Kruskal-Wallis tests were conducted to examine the association of lumefantrine plasma level with CYP2B6 c.516G>T, NR1I3 152c-1089T>C, CYP2B6 c.983T>C, CYP3A5*3 and CYP3A4*22. RESULTS: Among a total of 69 malaria-HIV coinfected patients (34 nonpregnant and 35 pregnant), median (interquartile range) age was 33 (27-36.5) years and body weight was 59.5 (50-67.5) kg. In nonpregnant group, CYP2B6 c.516G>T was significantly associated with lower log Cday 7 of lumefantrine using multivariate linear regressions (ß = -0.239; P = 0.013). In 59% of women with CYP2B6 c.516T, Cday 7 of lumefantrine was below the target of 280 ng/mL compared to 47% in the noncarriers. CYP2B6 c.983T>C significantly associated with higher log Cday 7 of desbutyl lumefantrine in both pregnant (ß = 0.383; P = 0.033) and nonpregnant (ß = 0.395; P = 0.023) groups. Composite genotypes for both CYP2B6 Single-nucleotide polymorphisms strongly associated with lumefantrine plasma concentration. An associative trend between lumefantrine pharmacokinetics and NR1I3 152c-1089T>C genotypes indicated that 70% of the Cday 7 of lumefantrine in those with NR1I3 152c-1089TT genotype was below 280 ng/mL compared to 53% in those with NR1I3 152c-1089CC or CT genotype. CONCLUSION: The findings revealed that the efavirenz-lumefantrine interaction was accentuated in the group with CYP2B6 c.516T, c.983C and NR1I3 152c-1089T alleles. This warrants further investigations of other drug-drug interactions for optimising dosing in genetically defined subgroups, particularly during drug development.


Subject(s)
Alkynes/administration & dosage , Artemether, Lumefantrine Drug Combination/administration & dosage , Benzoxazines/administration & dosage , Cyclopropanes/administration & dosage , Cytochrome P-450 Enzyme System/genetics , HIV Infections/drug therapy , Malaria/drug therapy , Receptors, Cytoplasmic and Nuclear/genetics , Adult , Alkynes/pharmacokinetics , Artemether, Lumefantrine Drug Combination/pharmacokinetics , Benzoxazines/pharmacokinetics , Case-Control Studies , Constitutive Androstane Receptor , Cyclopropanes/pharmacokinetics , Cytochrome P-450 CYP2B6/genetics , Cytochrome P-450 CYP3A/genetics , Female , Genotyping Techniques , HIV Infections/genetics , Humans , Malaria/genetics , Polymorphism, Single Nucleotide , Pregnancy , Treatment Outcome
4.
J Clin Pharmacol ; 57(12): 1554-1563, 2017 Dec.
Article in English | MEDLINE | ID: mdl-28618035

ABSTRACT

Imatinib, a tyrosine kinase inhibitor, is the drug of choice for the treatment of chronic myeloid leukemia in Nigeria. Several studies have established interindividual and interpopulation variations in imatinib disposition although no pharmacokinetic study have been conducted in an African population since the introduction of the drug. This study explored a population pharmacokinetic approach to investigate the disposition of imatinib in Nigerians and examined the involvement of some covariates including genetic factors in the variability of the drug disposition with a view to optimize the use of the drug in this population. A total of 250 plasma concentrations from 126 chronic myeloid leukemia patients were quantified using a validated method. A population pharmacokinetic model was fitted to the data using NONMEM VII software, and the influences of 12 covariates were investigated. The mean population-derived apparent steady-state clearance, elimination half-life, area under the concentration-time curve over 24 hours, and volume of distribution were 17.2 ± 1.8 L/h., 12.05 ± 2.1 hours, 23.26 ± 0.6 µg·h/mL, and 299 ± 20.4 L, respectively. Whole blood count, ethnicity, CYP3A5*3, and ABCB1 C3435T were found to have significant influence on the apparent clearance, while the interindividual variability in clearance and interoccasion variability in bioavailability were 17.4% and 20.4%, respectively. There was a wide variability in apparent clearance and area under the curve compared to those reported in other populations. Thus, treatment with a standard dose of imatinib in this population may not produce the desired effect in most of the patients, whereas continuous exposure to a low drug concentration could lead to pharmacokinetic-derived resistance. The authors suggest the need for therapeutic drug monitoring-guided dose individualization in this population.


Subject(s)
Antineoplastic Agents/pharmacokinetics , Antineoplastic Agents/therapeutic use , Imatinib Mesylate/pharmacokinetics , Imatinib Mesylate/therapeutic use , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/drug therapy , Models, Biological , Adolescent , Adult , Black People , Dose-Response Relationship, Drug , Drug Resistance, Neoplasm , Female , Humans , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/epidemiology , Male , Middle Aged , Nigeria/epidemiology , Reproducibility of Results , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...