Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Neurosci Lett ; 712: 134483, 2019 11 01.
Article in English | MEDLINE | ID: mdl-31494223

ABSTRACT

Adenosine is a signaling molecule induced under stress such as energy insufficiency and ischemic/hypoxic conditions. Adenosine controls multiple physiological and pathological cellular and tissue function by activation of four G protein-coupled receptors (GPCR). Functional role of adenosine signaling in acute pain has been widely studied. However, the role of adenosine signaling in chronic pain is poorly understood. At acute levels, adenosine can be beneficial to anti-pain whereas a sustained elevation of adenosine can be detrimental to promote chronic pain. In recent years, extensive progress has been made to define the role of adenosine signaling in chronic pain and to dissect molecular new insight underlying the development of chronic pain. In this review, we summarize the differential role of adenosine signaling cascade in acute and chronic pain with a major focus on recent studies revealing adenosine ADORA2B receptor activation in the pathology of chronic pain. We further provide a therapeutic outlook of how multiple adenosine signaling components can be useful to treat chronic pain.


Subject(s)
Acute Pain/metabolism , Adenosine/metabolism , Chronic Pain/metabolism , Signal Transduction/physiology , Animals , Humans
2.
FASEB J ; 33(9): 10528-10537, 2019 09.
Article in English | MEDLINE | ID: mdl-31260634

ABSTRACT

The circadian clock is important for cellular and organ function. However, its function in sickle cell disease (SCD), a life-threatening hemolytic disorder, remains unknown. Here, we performed an unbiased microarray screen, which revealed significantly altered expression of circadian rhythmic genes, inflammatory response genes, and iron metabolic genes in SCD Berkeley transgenic mouse lungs compared with controls. Given the vital role of period 2 (Per2) in the core clock and the unrecognized role of Per2 in SCD, we transplanted the bone marrow (BM) of SCD mice to Per2Luciferase mice, which revealed that Per2 expression was up-regulated in SCD mouse lung. Next, we transplanted the BM of SCD mice to period 1 (Per1)/Per2 double deficient [Per1/Per2 double knockout (dKO)] and wild-type mice, respectively. We discovered that Per1/Per2 dKO mice transplanted with SCD BM (SCD → Per1/Per2 dKO) displayed severe irradiation sensitivity and were more susceptible to an early death. Although we observed an increase of peripheral inflammatory cells, we did not detect differences in erythrocyte sickling. However, there was further lung damage due to elevated pulmonary congestion, inflammatory cell infiltration, iron overload, and secretion of IL-6 in lavage fluid. Overall, we demonstrate that Per1/Per2 is beneficial to counteract elevated systemic inflammation, lung tissue inflammation, and iron overload in SCD.-Adebiyi, M. G., Zhao, Z., Ye, Y., Manalo, J., Hong, Y., Lee, C. C., Xian, W., McKeon, F., Culp-Hill, R., D' Alessandro, A., Kellems, R. E., Yoo, S.-H., Han, L., Xia, Y. Circadian period 2: a missing beneficial factor in sickle cell disease by lowering pulmonary inflammation, iron overload, and mortality.


Subject(s)
Anemia, Sickle Cell/mortality , Circadian Clocks , Circadian Rhythm/genetics , Iron Overload/mortality , Period Circadian Proteins/physiology , Pneumonia/mortality , Anemia, Sickle Cell/genetics , Anemia, Sickle Cell/therapy , Animals , Bone Marrow Transplantation , Gene Expression Profiling , Iron Overload/genetics , Iron Overload/therapy , Mice , Mice, Knockout , Pneumonia/genetics , Pneumonia/therapy
3.
Blood Adv ; 3(8): 1347-1355, 2019 04 23.
Article in English | MEDLINE | ID: mdl-31015210

ABSTRACT

Sickle cell disease (SCD) is an autosomal-recessive hemolytic disorder with high morbidity and mortality. The pathophysiology of SCD is characterized by the polymerization of deoxygenated intracellular sickle hemoglobin, which causes the sickling of erythrocytes. The recent development of metabolomics, the newest member of the "omics" family, has provided a powerful new research strategy to accurately measure functional phenotypes that are the net result of genomic, transcriptomic, and proteomic changes. Metabolomics changes respond faster to external stimuli than any other "ome" and are especially appropriate for surveilling the metabolic profile of erythrocytes. In this review, we summarize recent pioneering research that exploited cutting-edge metabolomics and state-of-the-art isotopically labeled nutrient flux analysis to monitor and trace intracellular metabolism in SCD mice and humans. Genetic, structural, biochemical, and molecular studies in mice and humans demonstrate unrecognized intracellular signaling pathways, including purinergic and sphingolipid signaling networks that promote hypoxic metabolic reprogramming by channeling glucose metabolism to glycolysis via the pentose phosphate pathway. In turn, this hypoxic metabolic reprogramming induces 2,3-bisphosphoglycerate production, deoxygenation of sickle hemoglobin, polymerization, and sickling. Additionally, we review the detrimental role of an impaired Lands' cycle, which contributes to sickling, inflammation, and disease progression. Thus, metabolomic profiling allows us to identify the pathological role of adenosine signaling and S1P-mediated erythrocyte hypoxic metabolic reprogramming and hypoxia-induced impaired Lands' cycle in SCD. These findings further reveal that the inhibition of adenosine and S1P signaling cascade and the restoration of an imbalanced Lands' cycle have potent preclinical efficacy in counteracting sickling, inflammation, and disease progression.


Subject(s)
Anemia, Sickle Cell , Erythrocytes, Abnormal , Metabolomics , Proteomics , Signal Transduction , Therapies, Investigational , Anemia, Sickle Cell/metabolism , Anemia, Sickle Cell/pathology , Anemia, Sickle Cell/therapy , Animals , Erythrocytes, Abnormal/metabolism , Erythrocytes, Abnormal/pathology , Hemoglobin, Sickle/metabolism , Humans , Mice
4.
FASEB J ; 32(5): 2855-2865, 2018 05.
Article in English | MEDLINE | ID: mdl-29401601

ABSTRACT

Sphingosine-1-phosphate (S1P) is a biolipid involved in chronic inflammation in several inflammatory disorders. Recent studies revealed that elevated S1P contributes to sickling in sickle cell disease (SCD), a devastating hemolytic, genetic disorder associated with severe chronic inflammation and tissue damage. We evaluated the effect of elevated S1P in chronic inflammation and tissue damage in SCD and underlying mechanisms. First, we demonstrated that interfering with S1P receptor signaling by FTY720, a U.S. Food and Drug Administration-approved drug, significantly reduced systemic, local inflammation and tissue damage without antisickling effects. These findings led us to discover that S1P receptor activation leads to substantial elevated local and systemic IL-6 levels in SCD mice. Genetic deletion of IL-6 in SCD mice significantly reduced local and systemic inflammation, tissue damage, and kidney dysfunction. At the cellular level, we determined that elevated IL-6 is a key cytokine functioning downstream of elevated S1P, which contributes to increased S1P receptor 1 ( S1pr1) gene expression in the macrophages of several tissues in SCD mice. Mechanistically, we revealed that S1P-S1PR1 signaling reciprocally up-regulated IL-6 gene expression in primary mouse macrophages in a JAK2-dependent manner. Altogether, we revealed that elevated S1P, coupled with macrophage S1PR1 reciprocally inducing IL-6 expression, is a key signaling network functioning as a malicious, positive, feed-forward loop to sustain inflammation and promote tissue damage in SCD. Our findings immediately highlight novel therapeutic possibilities.-Zhao, S., Adebiyi, M. G., Zhang, Y., Couturier, J. P., Fan, X., Zhang, H., Kellems, R. E., Lewis, D. E., Xia, Y. Sphingosine-1-phosphate receptor 1 mediates elevated IL-6 signaling to promote chronic inflammation and multitissue damage in sickle cell disease.


Subject(s)
Anemia, Sickle Cell/metabolism , Gene Expression Regulation , Interleukin-6/biosynthesis , Lysophospholipids/metabolism , Receptors, Lysosphingolipid/metabolism , Signal Transduction , Sphingosine/analogs & derivatives , Anemia, Sickle Cell/genetics , Anemia, Sickle Cell/pathology , Animals , Disease Models, Animal , Inflammation/genetics , Inflammation/metabolism , Inflammation/pathology , Interleukin-6/genetics , Lysophospholipids/genetics , Macrophages/metabolism , Macrophages/pathology , Mice , Mice, Knockout , Receptors, Lysosphingolipid/genetics , Sphingosine/genetics , Sphingosine/metabolism , Sphingosine-1-Phosphate Receptors
5.
Sci Rep ; 6: 29637, 2016 07 20.
Article in English | MEDLINE | ID: mdl-27436223

ABSTRACT

Although Lands' cycle was discovered in 1958, its function and cellular regulation in membrane homeostasis under physiological and pathological conditions remain largely unknown. Nonbiased high throughput metabolomic profiling revealed that Lands' cycle was impaired leading to significantly elevated erythrocyte membrane lysophosphatidylcholine (LysoPC) content and circulating and erythrocyte arachidonic acid (AA) in mice with sickle cell disease (SCD), a prevalent hemolytic genetic disorder. Correcting imbalanced Lands' cycle by knockdown of phospholipase 2 (cPLA2) or overexpression of lysophosphatidycholine acyltransferase 1 (LPCAT1), two key enzymes of Lands' cycle in hematopoietic stem cells, reduced elevated erythrocyte membrane LysoPC content and circulating AA levels and attenuated sickling, inflammation and tissue damage in SCD chimeras. Human translational studies validated SCD mouse findings and further demonstrated that imbalanced Lands' cycle induced LysoPC production directly promotes sickling in cultured mouse and human SCD erythrocytes. Mechanistically, we revealed that hypoxia-mediated ERK activation underlies imbalanced Lands' cycle by preferentially inducing the activity of PLA2 but not LPCAT in human and mouse SCD erythrocytes. Overall, our studies have identified a pathological role of imbalanced Lands' cycle in SCD erythrocytes, novel molecular basis regulating Lands' cycle and therapeutic opportunities for the disease.


Subject(s)
Anemia, Sickle Cell/metabolism , Arachidonic Acid/blood , Erythrocytes/metabolism , Lysophosphatidylcholines/metabolism , Metabolomics/methods , 1-Acylglycerophosphocholine O-Acyltransferase/genetics , Anemia, Sickle Cell/blood , Anemia, Sickle Cell/genetics , Animals , Cell Hypoxia , Cells, Cultured , Disease Models, Animal , Female , Gene Knockdown Techniques , Group IV Phospholipases A2/genetics , Humans , Male , Mice
6.
Cell Rep ; 16(1): 106-119, 2016 06 28.
Article in English | MEDLINE | ID: mdl-27320922

ABSTRACT

The molecular mechanisms of chronic pain are poorly understood and effective mechanism-based treatments are lacking. Here, we report that mice lacking adenosine deaminase (ADA), an enzyme necessary for the breakdown of adenosine, displayed unexpected chronic mechanical and thermal hypersensitivity due to sustained elevated circulating adenosine. Extending from Ada(-/-) mice, we further discovered that prolonged elevated adenosine contributed to chronic pain behaviors in two additional independent animal models: sickle cell disease mice, a model of severe pain with limited treatment, and complete Freund's adjuvant paw-injected mice, a well-accepted inflammatory model of chronic pain. Mechanistically, we revealed that activation of adenosine A2B receptors on myeloid cells caused nociceptor hyperexcitability and promoted chronic pain via soluble IL-6 receptor trans-signaling, and our findings determined that prolonged accumulated circulating adenosine contributes to chronic pain by promoting immune-neuronal interaction and revealed multiple therapeutic targets.


Subject(s)
Adenosine/metabolism , Chronic Pain/metabolism , Nervous System/immunology , Nervous System/pathology , Receptor, Adenosine A2B/metabolism , Adenosine/blood , Adenosine Deaminase/metabolism , Anemia, Sickle Cell/complications , Anemia, Sickle Cell/pathology , Animals , Behavior, Animal , Chronic Pain/blood , Chronic Pain/pathology , Chronic Pain/physiopathology , Disease Models, Animal , Ganglia, Spinal/metabolism , Ganglia, Spinal/pathology , Gene Expression Regulation , Inflammation/pathology , Interleukin-6/metabolism , Mice, Knockout , Myeloid Cells/metabolism , Nervous System/physiopathology , Nociceptors/metabolism , Receptors, Interleukin-6/metabolism , Reflex , STAT3 Transcription Factor/metabolism , Sensory Receptor Cells/pathology , Signal Transduction , Solubility , TRPV Cation Channels/genetics , TRPV Cation Channels/metabolism , Up-Regulation
7.
Anal Chem ; 83(6): 2301-9, 2011 Mar 15.
Article in English | MEDLINE | ID: mdl-21319808

ABSTRACT

A circulating tumor cell (CTC) selection microfluidic device was integrated to an electrokinetic enrichment device for preconcentrating CTCs directly from whole blood to allow for the detection of mutations contained within the genomic DNA of the CTCs. Molecular profiling of CTCs can provide important clinical information that cannot be garnered simply by enumerating the selected CTCs. We evaluated our approach using SW620 and HT29 cells (colorectal cancer cell lines) seeded into whole blood as a model system. Because SW620 and HT29 cells overexpress the integral membrane protein EpCAM, they could be immunospecifically selected using a microfluidic device containing anti-EpCAM antibodies immobilized to the walls of a selection bed. The microfluidic device was operated at an optimized flow rate of 2 mm s(-1), which allowed for the ability to process 1 mL of whole blood in <40 min. The selected CTCs were then enzymatically released from the antibody selection surface and hydrodynamically transported through a pair of Pt electrodes for conductivity-based enumeration. The efficiency of CTC selection was found to be 96% ± 4%. Following enumeration, the CTCs were hydrodynamically transported at a flow rate of 1 µL min(-1) to an on-chip electromanipulation unit, where they were electrophoretically withdrawn from the bulk hydrodynamic flow and directed into a receiving reservoir. Using an electric field of 100 V cm(-1), the negatively charged CTCs were enriched into an anodic receiving reservoir to a final volume of 2 µL, providing an enrichment factor of 500. The collected CTCs could then be searched for point mutations using a PCR/LDR/capillary electrophoresis assay. The DNA extracted from the CTCs was subjected to a primary polymerase chain reaction (PCR) with the amplicons used for a ligase detection reaction (LDR) to probe for KRAS oncogenic point mutations. Point mutations in codon 12 of the KRAS gene were successfully detected in the SW620 CTCs for samples containing <10 CTCs in 1 mL of whole blood. However, the HT29 cells did not contain these mutations, consistent with their known genotype.


Subject(s)
Cell Count/instrumentation , Cell Separation/instrumentation , Electricity , Microfluidic Analytical Techniques , Neoplastic Cells, Circulating/metabolism , Neoplastic Cells, Circulating/pathology , Electric Conductivity , Electrophoresis, Capillary , HT29 Cells , Humans , Hydrodynamics , Ligases/metabolism , Polymerase Chain Reaction , Surface Properties
SELECTION OF CITATIONS
SEARCH DETAIL
...