Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Lab Chip ; 24(15): 3626-3650, 2024 07 23.
Article in English | MEDLINE | ID: mdl-38952234

ABSTRACT

Timely and accurate diagnosis is critical for effective healthcare, yet nearly half the global population lacks access to basic diagnostics. Point-of-care (POC) testing offers partial solutions by enabling low-cost, rapid diagnosis at the patient's location. At-home POC devices have the potential to advance preventive care and early disease detection. Nevertheless, effective sample preparation and detection methods are essential for accurate results. This review surveys recent advances in sample preparation and detection methods at POC. The goal is to provide an in-depth understanding of how these technologies can enhance at-home POC devices. Lateral flow assays, nucleic acid tests, and virus detection methods are at the forefront of POC diagnostic technology, offering rapid and sensitive tools for identifying and measuring pathogens, biomarkers, and viral infections. By illuminating cutting-edge research on assay development for POC diagnostics, this review aims to accelerate progress towards widely available, user-friendly, at-home health monitoring tools that empower individuals in personalized healthcare in the future.


Subject(s)
Point-of-Care Systems , Point-of-Care Testing , Humans , Lab-On-A-Chip Devices , Specimen Handling/instrumentation
2.
Sci Rep ; 13(1): 4245, 2023 03 14.
Article in English | MEDLINE | ID: mdl-36918634

ABSTRACT

Escherichia coli (E. coli) cells are present in fecal materials that can be the main source for disease-causing agents in water. As a result, E. coli is recommended as a water quality indicator. We have developed an innovative platform to detect E. coli for monitoring water quality on-site by integrating paper-based sample preparation with nucleic acid isothermal amplification. The platform carries out bacterial lysis and DNA enrichment onto a paper pad through ball-based valves for fluid control, with no need of laboratory equipment, followed by loop-mediated isothermal amplification (LAMP) in a battery-operated coffee mug, and colorimetric detection. We have used the platform to detect E. coli in environmental water samples in about 1 h, with a limit of quantitation of 0.2 CFU/mL, and 3 copies per reaction. The platform was confirmed for detecting multiple E. coli strains, and for water samples of different salt concentrations. We validated the functions of the platform by analyzing recreational water samples collected near the Atlantic Ocean that contain different concentrations of salt and bacteria.


Subject(s)
Escherichia coli , Nucleic Acid Amplification Techniques , Escherichia coli/genetics , Bacteria/genetics , Atlantic Ocean
SELECTION OF CITATIONS
SEARCH DETAIL