Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Methods Cell Biol ; 154: 183-215, 2019.
Article in English | MEDLINE | ID: mdl-31493818

ABSTRACT

The vertebrate kidney is comprised of functional units known as nephrons. Defects in nephron development or activity are a common feature of kidney disease. Current medical treatments are unable to ameliorate the dire consequences of nephron deficit or injury. Although there have been tremendous advancements in our understanding of nephron ontogeny and the response to damage, many significant knowledge gaps still remain. The zebrafish embryo kidney, or pronephros, is an ideal model for many renal development and regeneration studies because it is comprised of nephrons that share conserved features with the nephron units that comprise the mammalian metanephric kidney. In this chapter, we provide an overview about the benefits of using the zebrafish pronephros to study the mechanisms underlying nephrogenesis as well as epithelial repair and regeneration. We subsequently detail methods for the spatiotemporal assessment of gene and protein expression in zebrafish embryos that can be used to extend the understanding of nephron development and disease, and thereby create new opportunities to identify therapeutic strategies for regenerative medicine.


Subject(s)
Gene Expression Regulation, Developmental , In Situ Hybridization, Fluorescence/methods , Kidney/metabolism , Pronephros/metabolism , Regeneration/genetics , Zebrafish Proteins/genetics , Animals , Cilia/metabolism , Cilia/ultrastructure , Embryo, Nonmammalian/anatomy & histology , Embryo, Nonmammalian/cytology , Embryo, Nonmammalian/metabolism , Epithelial Cells/cytology , Epithelial Cells/metabolism , Immunohistochemistry/methods , Kidney/cytology , Kidney/embryology , Nucleic Acid Hybridization/methods , Organogenesis/genetics , Pronephros/cytology , Pronephros/growth & development , Tissue Fixation/methods , Zebrafish , Zebrafish Proteins/metabolism
2.
Proc Natl Acad Sci U S A ; 116(17): 8409-8418, 2019 04 23.
Article in English | MEDLINE | ID: mdl-30948642

ABSTRACT

Multiciliated cells (MCCs) are specialized epithelia with apical bundles of motile cilia that direct fluid flow. MCC dysfunction is associated with human diseases of the respiratory, reproductive, and central nervous systems. Further, the appearance of renal MCCs has been cataloged in several kidney conditions, where their function is unknown. Despite their pivotal health importance, many aspects of MCC development remain poorly understood. Here, we utilized a chemical screen to identify molecules that affect MCC ontogeny in the zebrafish embryo kidney, and found prostaglandin signaling is essential both for renal MCC progenitor formation and terminal differentiation. Moreover, we show that prostaglandin activity is required downstream of the transcription factor ets variant 5a (etv5a) during MCC fate choice, where modulating prostaglandin E2 (PGE2) levels rescued MCC number. The discovery that prostaglandin signaling mediates renal MCC development has broad implications for other tissues, and could provide insight into a multitude of pathological states.


Subject(s)
Cell Differentiation , Cilia/metabolism , Kidney , Prostaglandins , Signal Transduction , Animals , Cell Differentiation/genetics , Cell Differentiation/physiology , Epithelial Cells/cytology , Epithelial Cells/physiology , Epithelium/metabolism , Epithelium/physiology , Gene Expression Regulation, Developmental/genetics , Gene Expression Regulation, Developmental/physiology , Kidney/cytology , Kidney/growth & development , Kidney/metabolism , Prostaglandins/genetics , Prostaglandins/metabolism , Signal Transduction/genetics , Signal Transduction/physiology , Zebrafish
SELECTION OF CITATIONS
SEARCH DETAIL
...