Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Biometals ; 37(2): 389-403, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38055071

ABSTRACT

The bio-mediated synthesis of nanoparticles offers a sustainable and eco-friendly approach. In the present study, silver nanoparticles (AgNPs) were synthesized using Joshanda extract, a commercially available herbal formulation derived from a traditional medicinal plant, as a reducing and stabilizing agent. The as-synthesized AgNPs were characterized using UV-Vis spectroscopy, dynamic light scattering (DLS), X-ray Diffraction (XRD) study, and Fourier-transform infrared (FTIR) analysis. UV-Vis spectroscopy exhibited a prominent absorption peak at 430 nm, confirming the formation of AgNPs. DLS analysis revealed the size distribution of the nanoparticles, ranging from 80 to 100 nm, and zeta potential measurements indicated a surface charge of - 14.4 mV. The XRD analysis provide evidence for the presence of a face-centered cubic structure within the silver nanoparticles. FTIR analysis further elucidated the interaction of bioactive compounds from the Joshanda extract with the AgNPs' surface. Strong peaks at 765-829 cm-1 indicated C-Cl stretching vibrations of alkyl halides, while the stretching of alkenes C=C was observed at 1641 cm-1. Moreover, the presence of alcohols and phenol (OH) groups was identified at 3448 cm-1, suggesting their involvement in nanoparticle stabilization. The antimicrobial potential of the synthesized AgNPs was evaluated against both gram-negative Pseudomonas aeruginosa and gram-positive Streptococcus mutans using zone of inhibition assays. The AgNPs exhibited remarkable inhibitory effects against both types of bacteria. Additionally, AgNPs-treated groups demonstrated a significant increase in reactive oxygen species (ROS) levels, indicating potential of as-synthesized AgNPs in disruption of the target microbial membranes. Furthermore, the as-synthesized AgNPs exhibited notable anti-biofilm properties by effectively hindering the development of mature biofilms. This study highlights the efficient green synthesis of AgNPs using Joshanda extract and also provides insights into their physico-chemical properties of as-synthesized nanoparticles. The demonstrated antimicrobial activity against both gram-negative and gram-positive bacteria, along with biofilm inhibition potential, underscores the promising applications of the as-synthesized AgNPs in the field of biomedical and environmental sciences. The study bridges traditional knowledge with contemporary nanotechnology, offering a novel avenue for the development of eco-friendly antimicrobial agents.


Subject(s)
Anti-Infective Agents , Metal Nanoparticles , Plant Preparations , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Silver/pharmacology , Silver/chemistry , Gram-Negative Bacteria , Metal Nanoparticles/chemistry , Plant Extracts/pharmacology , Plant Extracts/chemistry , Gram-Positive Bacteria , Anti-Infective Agents/pharmacology , Spectroscopy, Fourier Transform Infrared
2.
Talanta ; 263: 124675, 2023 Oct 01.
Article in English | MEDLINE | ID: mdl-37257240

ABSTRACT

This work proposes a novel bioassay designed to detect the 2B receptor of serotonin in serum samples, which can serve as a risk marker for cancer recurrence after surgical resection. Traditional methods for detecting this marker are often costly and time-consuming, requiring specialized reagents and equipment. The new bioassay is designed to enable direct and reagent-less detection of the 2B receptor in serum samples, without the need of antibodies or enzymes. The assay uses a small molecule ligand for the 2B receptor combined with a thiol-targeting fluorescent dye on a compact peptide-based molecular frame. This design allows for a rapid and specific readout of the fluorescent signal upon probe-protein interaction. In addition, the covalent biosensing process used in the assay allows for signal enhancement by electrochemical cross-linking of serum proteins. The bioassay was successfully used to detect the 2B receptor in serum samples from hepatocarcinoma patients, indicating its potential as a powerful tool for early cancer detection and monitoring.


Subject(s)
Biosensing Techniques , Liver Neoplasms , Humans , Sulfhydryl Compounds , Neoplasm Recurrence, Local/diagnosis , Peptides/chemistry , Biomarkers , Fluorescent Dyes/chemistry , Liver Neoplasms/diagnosis
3.
Front Microbiol ; 13: 889694, 2022.
Article in English | MEDLINE | ID: mdl-35572666

ABSTRACT

Changes in bacteriome composition have a strong association with gastric cancer (GC). However, the relationship between stomach fungal microbiota composition and human host immune factors remains largely unknown. With high-throughput internal transcribed spacer region 2 (ITS2) sequencing, we characterized gastric fungal microbiome among the GC (n = 22), matched para-GC (n = 22), and healthy individuals (n = 11). A total of 4.5 million valid tags were generated and stratified into 1,631 operational taxonomic units (OTUs), and 10 phyla and 301 genera were identified. The presence of GC was associated with a distinct gastric fungal mycobiome signature, characterized by a decreased biodiversity and richness and significant differences in fungal composition. In addition, fungal dysbiosis was reflected by the increased ratio of Basidiomycota to Ascomycota and a higher proportion of opportunistic fungi, such as Cutaneotrichosporon and Malassezia, as well as the loss of Rhizopus and Rhodotorula during the progression of cancers. A panel of GC-associated fungi (e.g., Cutaneotrichosporon and Rhodotorula) was found to adequately exhibit diagnostic value. Furthermore, the mRNA levels of cytokines and chemokines were detected and correlated with the specific fungal dysbiosis, indicating the possible mechanism of GC. This study reveals GC-associated mycobiome dysbiosis characterized by altered fungal composition and ecology and suggests that the fungal mycobiome might play a role in the pathogenesis of GC.

4.
Anal Bioanal Chem ; 414(7): 2431-2438, 2022 Mar.
Article in English | MEDLINE | ID: mdl-35037986

ABSTRACT

Precise evaluation of telomerase activity is essential for the clinical diagnosis of early tumors. Herein, we have ingeniously designed a tetrahedral DNA nanostructure, with hairpin-shaped DNA probes rich in cytosine bases at four vertices for telomerase detection. The DNA-templated silver nanoclusters can be formed after the addition of Ag. Then the introduction of telomerase adds the single-strand TTAGGG extension, which can "turn on" the fluorescence of silver nanoclusters quickly by the proximity of the resulting guanine-rich sequences to silver nanoclusters and realize accurate detection of telomerase activity. In this study, integration of high stability tetrahedral DNA nanostructure and fluorescence signal amplification of four DNA-templated silver nanoclusters offers the advantage of high sensitivity, with a low detection limit of 1 cell. More than that, this method is low-cost, facile, and feasible for practical clinical applications.


Subject(s)
Biosensing Techniques , Metal Nanoparticles , Nanostructures , Telomerase , Biosensing Techniques/methods , DNA/chemistry , Fluorescence , Fluorescent Dyes/chemistry , Metal Nanoparticles/chemistry , Nanostructures/chemistry , Silver/chemistry , Spectrometry, Fluorescence
5.
Talanta ; 240: 123151, 2022 Apr 01.
Article in English | MEDLINE | ID: mdl-34942472

ABSTRACT

ALKBH3 is an important marker for early diagnosis and histopathological grading of prostate cancer. However, the lack of a rapid and sensitive method to quantify the enzyme's activity in the current time necessitates the development of a new quantitative assay. Herein, we first tried to quantitative assay for ALKBH3 activity using an electrochemical method based on the degradation of the signal probe due to alkyl group of the m1A removal by ALKBH3. A strong electrochemical signal can be obtained when the ferrocene (Fc) labeled dsDNAs with 1-methyladenine are immobilized on the electrode. In the presence of ALKBH3, the 3' blunt of DNA can be formed because of the removal of alkyl group of the Fc-DNA probe, which can be recognized and degraded by Exonuclease III (Exo III). As a result, the electrochemical signal produced by Fc greatly decreases, and the activity of ALKBH3 can be easily detected via changes in electrochemical signal. Quantitative analysis of ALKBH3 activity showed a wide detection range (0.1 and 20 ng/mL) and low detection limit (0.04 ng/mL). Furthermore, the method can be applied to detect 1-methyladenine through ALKBH3 in cell lysates and tissue samples, providing a new method for clinical detection of prostate cancer.


Subject(s)
Biosensing Techniques , DNA Probes/genetics , Demethylation , Electrochemical Techniques , Electrodes , Exodeoxyribonucleases/metabolism , Humans , Male
6.
Contemp Clin Dent ; 7(4): 550-554, 2016.
Article in English | MEDLINE | ID: mdl-27994427

ABSTRACT

Maxillary first molar with three roots and 3-4 canals is a common occurrence. However, extreme variations in their canal morphology have been reported ranging from one single canal and one root to as many as eight root canals. This article presents three cases of successful endodontic management of maxillary first molars with atypical canal morphologies, thus highlighting the fact that variations do occur and an endodontist should always be aware of aberrancies in root canal system apart from the knowledge of normal root canal anatomy.

SELECTION OF CITATIONS
SEARCH DETAIL
...