Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Heliyon ; 9(11): e21500, 2023 Nov.
Article in English | MEDLINE | ID: mdl-38027829

ABSTRACT

Purpose: This review aims to examine the potential of oleogels as a frying medium to decrease oil absorption during deep-frying and enhance the nutritional and energy content of foods. By investigating the factors influencing oil incorporation during deep-frying and examining the application of oleogels in this process, we seek to provide insights into using oleogels as an alternative to traditional cooking oils. Scope: Deep-frying, a widely used cooking method, leads to the retention of large amounts of oil in fried food, which has been associated with health concerns. To address this issue, researchers have investigated various methods to minimize oil absorption during frying. One promising approach is the use of oleogels, which are thermo-reversible, three-dimensional gel networks formed by entrapment of bulk oil with a low concentration (<10% of weight) of solid lipid materials known as oleogelators. This review will focus on the following aspects: a) an overview of deep-fried foods, b) factors influencing oil uptake and underlying mechanisms for oil absorption during deep-frying, c) the characterization and application of different frying oils and their oleogels in deep-fried foods, d) components of the oleogel system for deep-frying, and e) the health impact, oxidative stability, and sensory acceptability of using oleogels in deep-frying. Key findings: The review highlights the potential of oleogels as a promising alternative frying medium to reduce fat absorption in deep-fried foods. Considering the factors influencing oil uptake during deep-frying, as well as exploring the properties and applications of different frying oils and their oleogels, can result in improved product qualities and heightened consumer acceptance. Moreover, oleogels offer the advantage of lower fat content in fried products, addressing health concerns associated with traditional deep-frying methods. The capacity to enhance the nutritional and energy profile of foods while preserving sensory qualities and oxidative stability positions oleogels as a promising choice for upcoming food processing applications.

2.
Crit Rev Food Sci Nutr ; : 1-21, 2022 Sep 06.
Article in English | MEDLINE | ID: mdl-36066463

ABSTRACT

Ensuring the safety of food products is critical to food production and processing. In food processing and production, several standard guidelines are implemented to achieve acceptable food quality and safety. This notwithstanding, due to human limitations, processed foods are often contaminated either with microorganisms, microbial byproducts, or chemical agents, resulting in the compromise of product quality with far-reaching consequences including foodborne diseases, food intoxication, and food recall. Transitioning from manual food processing to automation-aided food processing (smart food processing) which is guided by artificial intelligence will guarantee the safety and quality of food. However, this will require huge investments in terms of resources, technologies, and expertise. This study reviews the potential of artificial intelligence in food processing. In addition, it presents the technologies and methods with potential applications in implementing automated technology-aided processing. A conceptual design for an automated food processing line comprised of various operational layers and processes targeted at enhancing the microbial safety and quality assurance of liquid foods such as milk and beverages is elaborated.

3.
J Texture Stud ; 2018 Jun 23.
Article in English | MEDLINE | ID: mdl-29935092

ABSTRACT

The effect of short-chain inulin on the rheological and sensory properties of reduced fat set coconut milk yoghurt was studied with whole fat coconut milk yoghurt as reference. The concentration of short-chain inulin was varied at 0, 5, 10, 15, and 20% w/v respectively. All the yoghurt samples displayed higher elastic modulus G' than viscous modulus G". However, 15% inulin yoghurt had the highest value for G' & G". The 15 and 20% inulin yoghurts displayed high yield stress (1036.7 ± 2.39 & 368.23 ± 0.30 Pa). Addition threshold of 15% was established, beyond this level there was a significant decrease in the yield stress, firmness, cohesiveness and consistency values of the reduced fat yoghurts. Using Pearson correlation analysis, no correlation was observed between firmness and yield stress, Similarly, there was significant correlation between the yield stress and instrumental viscosity r = 0.957; p < 0.01. Furthermore, all yoghurt samples displayed strain thinning behavior except whole fat yoghurt. Carbohydrate was affected by inulin incorporation. Addition of short chain inulin improved sensorial characteristics such as taste, and flavor, but did not display significant difference in color and odor of yoghurt samples. This article is protected by copyright. All rights reserved.

SELECTION OF CITATIONS
SEARCH DETAIL
...