Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Nanoscale Adv ; 4(15): 3149-3160, 2022 Jul 29.
Article in English | MEDLINE | ID: mdl-36132822

ABSTRACT

Random networks of nanoparticle-based memristive switches enable pathways for emulating highly complex and self-organized synaptic connectivity together with their emergent functional behavior known from biological neuronal networks. They therefore embody a distinct class of neuromorphic hardware architectures and provide an alternative to highly regular arrays of memristors. Especially, networks of memristive nanoparticles (NPs) poised at the percolation threshold are promising due to their capabilities of showing brain-like activity such as critical dynamics or long-range temporal correlation (LRTC), which are closely connected to the computational capabilities in biological neuronal networks. Here, we adapt this concept to networks of Ag-NPs poised at the electrical percolation threshold, where the memristive properties are governed by electro-chemical metallization. We show that critical dynamics and LRTC are preserved although the nature of individual memristive gaps throughout the network is fundamentally changed by filling the gaps with an insulating matrix. The results in this work generate important contributions towards the practical applicability of critical dynamics and LRTC in percolating NP networks by elucidating the consequences of NP network encapsulation, which is considered as an important step towards device integration.

2.
Materials (Basel) ; 14(17)2021 Sep 01.
Article in English | MEDLINE | ID: mdl-34501095

ABSTRACT

Biomedical applications of magnesium (Mg) and its alloys are generally dependent on their degradation behavior in vivo. Despite its attractive properties, which make Mg suitable for orthopedic applications, the in vivo material-tissue (bone, blood, and lymph tissues) interaction is not yet fully understood. To investigate the influence of major serum proteins on the degradation, this study focused on fetuin, which is one of the major non-collagenous plasma proteins and which is essential for biomineralization. This study used a physiological setup to investigate the influence of fetuin on the degradation behavior of pure Mg in the presence of calcium (Ca). Extruded pure Mg samples were immersed under cell culture conditions in Hank's balanced salt solution (HBSS) under defined Ca regimes. The results showed a significant decrease in the degradation rate (DR) when both fetuin and Ca were present in an immersion medium as compared to media where they were not simultaneously present. A possible reason for this behavior was the forming of a dense, protein-degradation products protection barrier at the material surface. Furthermore, the limitation of freely available Ca might be a reason for a decreased degradation. The cultivation of primary osteoblasts (pOB) was possible at the fetuin-coated Mg-surface without additional serum supplementation.

SELECTION OF CITATIONS
SEARCH DETAIL
...