Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Clin Exp Pharmacol Physiol ; 49(5): 558-566, 2022 05.
Article in English | MEDLINE | ID: mdl-35133684

ABSTRACT

Pulmonary arterial hypertension (PAH) is characterized by cardiac remodelling. Glutaminolysis plays a crucial role in PAH-induced remodelling. The metabotropic glutamate receptor 5 (mGluR5) may mediate this process. This study investigated whether or not the blockade of mGluR5 may attenuate PAH-induced pathological cardiac remodelling. Pulmonary arterial hypertension was induced by intraperitoneally injecting male Sprague-Dawley (SD) rats with 60 mg/kg of monocrotaline (MCT). 3-((2-Methyl-4-thiazolyl)ethynyl)pyridine (MTEP) (10 mg/kg intraperitoneally) was used as a therapeutic intervention to block mGluR5. Cardiac functions were assessed with right heart catheterization and electrocardiography. Alterations in protein expressions and inflammatory markers were investigated using western blot and enzyme-linked immunosorbent assay (ELISA), respectively. Increased right ventricular systolic pressure (RSVP), elevated protein expressions of mGluR5, collagen types I and III and cartilage intermediate layer protein 1 (CILP1), enhanced phosphorylation of phosphatidylinositol 3-kinase (PI3K), AKT and p38 mitogen-activated protein kinase (P38MAPK), increased angiopoietin 2 (Ang 2) and vascular endothelial growth factor-α (VEGF) protein expressions and elevated serum levels of interleukin 6 (IL-6) and tumour necrotic factor α (TNF-α) were observed in MCT-induced PAH rats. MTEP improved hemodynamics and right ventricular hypertrophy. MTEP also attenuated MCT-induced elevations in the protein expressions of mGluR5, collagen types I and III, CILP1, Ang 2 and VEGF and decreased PI3K, AKT and P38MAPK phosphorylations and inflammatory cytokine levels. Metabotropic glutamate receptor 5 blockade using MTEP ameliorates PAH-induced pathological right cardiac remodelling via inhibiting the signalling cascade involving PI3K/AKT, P38MAPK, Ang 2 and VEGF.


Subject(s)
Hypertension, Pulmonary , Pulmonary Arterial Hypertension , Animals , Disease Models, Animal , Hypertension, Pulmonary/chemically induced , Hypertension, Pulmonary/drug therapy , Hypertension, Pulmonary/pathology , Male , Monocrotaline , Phosphatidylinositol 3-Kinases/metabolism , Pulmonary Artery/metabolism , Rats , Rats, Sprague-Dawley , Receptor, Metabotropic Glutamate 5/antagonists & inhibitors , Receptor, Metabotropic Glutamate 5/metabolism , Vascular Endothelial Growth Factor A , Ventricular Remodeling
2.
Front Cardiovasc Med ; 8: 667446, 2021.
Article in English | MEDLINE | ID: mdl-33996951

ABSTRACT

Pulmonary arterial hypertension (PAH) is a decimating ailment described by chronic precapillary pulmonary hypertension, an elevated mean pulmonary arterial pressure with a normal pulmonary capillary wedge pressure, and a raised pulmonary vascular resistance resulting in increased right ventricular afterload culminating in heart failure and death. Current PAH treatments regulate the vasodilatory/vasoconstrictory balance of pulmonary vessels. However, these treatment options are unable to stop the progression of, or reverse, an already established disease. Recent studies have advanced a metabolic dysregulation, featuring increased glutamine metabolism, as a mechanism driving PAH progression. Metabolic dysregulation in PAH leads to increased glutaminolysis to produce substrate to meet the high-energy requirement by hyperproliferative and apoptosis-resistant pulmonary vascular cells. This article explores the role of glutamate metabolism in PAH and how it could be targeted as an anti-remodeling therapeutic strategy.

SELECTION OF CITATIONS
SEARCH DETAIL
...