Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 46
Filter
1.
Molecules ; 28(3)2023 Jan 18.
Article in English | MEDLINE | ID: mdl-36770644

ABSTRACT

Producers of milk and dairy products have been faced with the challenge of responding to European society's demand for guaranteed animal welfare production. In recent years, measures have been taken to improve animal welfare conditions on farms and evaluation systems have been developed to certify them, such as the Welfare Quality® protocol. Among the markers used for this purpose, acute phase proteins stand out, with haptoglobin being one of the most relevant. However, the diagnostic power of these tools is limited and more sensitive and specific technologies are required to monitor animal health status. Different factors such as diet, stress, and diseases modify the metabolism of the animals, altering the composition of the milk in terms of oligosaccharides, proteins, and lipids. Thus, in order to study oxidative-stress-associated lipids, a collection of well-characterized milk samples, both by veterinary diagnosis and by content of the acute stress biomarker haptoglobin, was analyzed by mass spectrometry and artificial intelligence. Two lipid species (sphingomyelin and phosphatidylcholine) were identified as potential biomarkers of health status in dairy cows. Both lipids allow for the discrimination of milk from sick animals and also milk from those with stress. Moreover, lipidomics revealed specific lipid profiles depending on the origin of the samples and the degree of freedom of the animals on the farm. These data provide evidence for specific lipid changes in stressed animals and open up the possibility that haptoglobin could also affect lipid metabolism in cow's milk.


Subject(s)
Artificial Intelligence , Milk , Animals , Cattle , Female , Milk/chemistry , Haptoglobins/metabolism , Health Status , Lipids/analysis
2.
Int J Mol Sci ; 24(4)2023 Feb 14.
Article in English | MEDLINE | ID: mdl-36835247

ABSTRACT

Cannabis has been used for decades as a palliative therapy in the treatment of cancer. This is because of its beneficial effects on the pain and nausea that patients can experience as a result of chemo/radiotherapy. Tetrahydrocannabinol and cannabidiol are the main compounds present in Cannabis sativa, and both exert their actions through a receptor-mediated mechanism and through a non-receptor-mediated mechanism, which modulates the formation of reactive oxygen species. These oxidative stress conditions might trigger lipidic changes, which would compromise cell membrane stability and viability. In this sense, numerous pieces of evidence describe a potential antitumor effect of cannabinoid compounds in different types of cancer, although controversial results limit their implementation. In order to further investigate the possible mechanism involved in the antitumoral effects of cannabinoids, three extracts isolated from Cannabis sativa strains with high cannabidiol content were analyzed. Cell mortality, cytochrome c oxidase activity and the lipid composition of SH-SY5Y cells were determined in the absence and presence of specific cannabinoid ligands, with and without antioxidant pre-treatment. The cell mortality induced by the extracts in this study appeared to be related to the inhibition of the cytochrome c oxidase activity and to the THC concentration. This effect on cell viability was similar to that observed with the cannabinoid agonist WIN55,212-2. The effect was partially blocked by the selective CB1 antagonist AM281, and the antioxidant α-tocopherol. Moreover, certain membrane lipids were affected by the extracts, which demonstrated the importance of oxidative stress in the potential antitumoral effects of cannabinoids.


Subject(s)
Cannabis , Neuroblastoma , Plant Extracts , Humans , Cannabidiol/analysis , Cannabinoids/analysis , Cannabis/chemistry , Dronabinol/pharmacology , Electron Transport Complex IV/metabolism , Neuroblastoma/drug therapy , Plant Extracts/chemistry , Plant Extracts/therapeutic use
3.
Int J Mol Sci ; 24(2)2023 Jan 10.
Article in English | MEDLINE | ID: mdl-36674832

ABSTRACT

The development of Cannabis sativa strains with high cannabidiol (CBD) and low tetrahydrocannabinol (THC) content is a growing field of research, both for medical and recreational use. However, the mechanisms behind clinical actions of cannabinoids are still under investigation, although there is growing evidence that mitochondria play an important role in many of them. Numerous studies have described that cannabinoids modulate mitochondrial activity both through activation of mitochondrial cannabinoid receptors and through direct action on other proteins such as mitochondrial complexes involved in cellular respiration. Thus, the aim of this study was to determine the actions of a panel of extracts, isolated from high-CBD varieties of Cannabis sativa, on the activity of the mitochondrial electron transport chain complex IV, cytochrome c oxidase (CCO), in order to select those with a safer profile. After demonstrating that Cannabis sativa strains could be identified by cannabinoids content, concentration-response curves were performed with a collection of extracts from strains with high-CBD and low-THC content using bovine CCO. The CCO rate was clearly modified by specific extracts of Cannabis sativa plants compared to others. Half maximal inhibitory concentrations (IC50) of extracts and the inhibitory effects evoked at 1 × 10-4 g/mL displayed a significant correlation with the THC. Therefore, the screening of extracts based on CCO activity provides a powerful and rapid methodology to identify those plants with higher mitochondrial toxicity or even mito-protective actions.


Subject(s)
Cannabidiol , Cannabinoids , Cannabis , Animals , Cattle , Dronabinol/pharmacology , Electron Transport Complex IV , Plant Extracts/pharmacology , Cannabinoids/pharmacology , Cannabidiol/pharmacology , Biomarkers , Mitochondria
4.
Pharmaceuticals (Basel) ; 15(3)2022 Mar 10.
Article in English | MEDLINE | ID: mdl-35337135

ABSTRACT

Depression is the most prevalent of the mental illnesses and serotonin (5-hydroxytryptamine, 5-HT) is considered to be the major neurotransmitter involved in its etiology and treatment. In this context, 5-HT1A receptors have attracted interest as targets for therapeutic intervention. Notably the activation of presynaptic 5-HT1A autoreceptors delays antidepressant effects whereas the stimulation of postsynaptic 5-HT1A heteroreceptors is needed for an antidepressant action. NLX-101 (also known as F15599) is a selective biased agonist which exhibits preferred activation of cortical over brain stem 5-HT1A receptors. Here, we used behavioral, neurochemical and molecular methods to examine the antidepressant-like effects in rats of a single dose of NLX-101 (0.16 mg/kg, i.p.). NLX-101 reduced immobility in the forced swim test when measured 30 min but not 24 h after drug administration. NLX-101 increased extracellular concentrations of glutamate and dopamine in the medial prefrontal cortex, but no changes were detected in the efflux of noradrenaline or 5-HT. NLX-101 also produced an increase in the activation of pmTOR, pERK1/2 and pAkt, and the expression of PSD95 and GluA1, which may contribute to its rapid antidepressant action.

5.
Neuroscience ; 476: 72-89, 2021 11 10.
Article in English | MEDLINE | ID: mdl-34543675

ABSTRACT

Displaying a stress response to threatening stimuli is essential for survival. These reactions must be adjusted to be adaptive. Otherwise, even mental illnesses may develop. Describing the physiological stress response may contribute to distinguishing the abnormal responses that accompany the pathology, which may help to improve the development of both diagnoses and treatments. Recent advances have elucidated many of the processes and structures involved in stress response management; however, there is still much to unravel regarding this phenomenon. The main aim of the present research is to characterize the response of three brain areas deeply involved in the stress response (i.e., to an acute stressful experience). Specifically, the electrophysiological activity of the infralimbic division of the medial prefrontal cortex (IL), the basolateral nucleus of the amygdala (BLA), and the dorsal hippocampus (dHPC) was recorded after the infusion of 0.5 µl of corticosterone-releasing factor into the dorsal raphe nucleus (DRN), a procedure which has been validated as a paradigm to cause acute stress. This procedure induced a delayed reduction in slow waves in the three structures, and an increase in faster oscillations, such as those in theta, beta, and gamma bands. The mutual information at low theta frequencies between the BLA and the IL increased, and the delta and slow wave mutual information decreased. The low theta-mid gamma phase-amplitude coupling increased within BLA, as well as between BLA and IL. This electrical pattern may facilitate the activation of these structures, in response to the stressor, and memory consolidation.


Subject(s)
Amygdala , Memory Consolidation , Dorsal Raphe Nucleus , Hippocampus , Prefrontal Cortex
6.
Brain Struct Funct ; 226(8): 2603-2616, 2021 Nov.
Article in English | MEDLINE | ID: mdl-34363521

ABSTRACT

Ketamine has rapid and robust antidepressant effects. However, unwanted psychotomimetic effects limit its widespread use. Hence, several studies examined whether GluN2B-subunit selective NMDA antagonists would exhibit a better therapeutic profile. Although preclinical work has revealed some of the mechanisms of action of ketamine at cellular and molecular levels, the impact on brain circuitry is poorly understood. Several neuroimaging studies have examined the functional changes in the brain induced by acute administration of ketamine and Ro 25-6981 (a GluN2B-subunit selective antagonist), but the changes in the microstructure of gray and white matter have received less attention. Here, the effects of ketamine and Ro 25-6981 on gray and white matter integrity in male Sprague-Dawley rats were determined using diffusion-weighted magnetic resonance imaging (DWI). In addition, DWI-based structural brain networks were estimated and connectivity metrics were computed at the regional level. Immunohistochemical analyses were also performed to determine whether changes in myelin basic protein (MBP) and neurofilament heavy-chain protein (NF200) may underlie connectivity changes. In general, ketamine and Ro 25-6981 showed some opposite structural alterations, but both compounds coincided only in increasing the fractional anisotropy in infralimbic prefrontal cortex and dorsal raphe nucleus. These changes were associated with increments of NF200 in deep layers of the infralimbic cortex (together with increased MBP) and the dorsal raphe nucleus. Our results suggest that the synthesis of NF200 and MBP may contribute to the formation of new dendritic spines and myelination, respectively. We also suggest that the increase of fractional anisotropy of the infralimbic and dorsal raphe nucleus areas could represent a biomarker of a rapid antidepressant response.


Subject(s)
Antidepressive Agents , Ketamine , Phenols , Piperidines , Animals , Antidepressive Agents/pharmacology , Dorsal Raphe Nucleus , Ketamine/pharmacology , Magnetic Resonance Imaging , Male , Phenols/metabolism , Piperidines/metabolism , Prefrontal Cortex , Rats , Rats, Sprague-Dawley
7.
Int J Mol Sci ; 22(16)2021 Aug 12.
Article in English | MEDLINE | ID: mdl-34445375

ABSTRACT

Fast and sustained antidepressant effects of ketamine identified the mammalian target of rapamycin (mTOR) signaling pathway as the main modulator of its antidepressive effects. Thus, mTOR signaling has become integral for the preclinical evaluation of novel compounds to treat depression. However, causality between mTOR and depression has yet to be determined. To address this, we knocked down mTOR expression in mice using an acute intracerebral infusion of small interfering RNAs (siRNA) in the infralimbic (IL) or prelimbic (PrL) cortices of the medial prefrontal cortex (mPFC), and evaluated depressive- and anxious-like behaviors. mTOR knockdown in IL, but not PrL, cortex produced a robust depressive-like phenotype in mice, as assessed in the forced swimming test (FST) and the tail suspension test (TST). This phenotype was associated with significant reductions of mTOR mRNA and protein levels 48 h post-infusion. In parallel, decreased brain-derived neurotrophic factor (BDNF) expression was found bilaterally in both IL and PrL cortices along with a dysregulation of serotonin (5-HT) and glutamate (Glu) release in the dorsal raphe nucleus (DRN). Overall, our results demonstrate causality between mTOR expression in the IL cortex and depressive-like behaviors, but not in anxiety.


Subject(s)
Depression/psychology , Prefrontal Cortex/metabolism , TOR Serine-Threonine Kinases/genetics , TOR Serine-Threonine Kinases/metabolism , Animals , Brain-Derived Neurotrophic Factor/genetics , Brain-Derived Neurotrophic Factor/metabolism , Depression/genetics , Depression/metabolism , Disease Models, Animal , Dorsal Raphe Nucleus/metabolism , Gene Knockdown Techniques , Glutamic Acid/metabolism , Hindlimb Suspension , Male , Mice , Serotonin/metabolism , Swimming
8.
Biochem Pharmacol ; 185: 114433, 2021 03.
Article in English | MEDLINE | ID: mdl-33513342

ABSTRACT

Major Depression is a severe psychiatric condition with a still poorly understood etiology. In the last years, evidence supporting the neuroinflammatory hypothesis of depression has increased. In the current clinical scenario, in which the available treatments for depression is far from optimal, there is an urgent need to develop fast-acting drugs with fewer side effects. In this regard, recent pieces of evidence suggest that cannabidiol (CBD), the major non-psychotropic component of Cannabis sativa with anti-inflammatory properties, appears as a drug with antidepressant properties. In this work, CBD 30 mg/kg was administered systemically to mice 30 min before lipopolysaccharide (LPS; 0.83 mg/kg) administration as a neuroinflammatory model, and behavioral tests for depressive-, anhedonic- and anxious-like behavior were performed. NF-ĸB, IκBα and PPARγ levels were analyzed by western blot in nuclear and cytosolic fractions of cortical samples. IL-6 and TNFα levels were determined in plasma and prefrontal cortex using ELISA and qPCR techniques, respectively. The precursor tryptophan (TRP), and its metabolites kynurenine (KYN) and serotonin (5-HT) were measured in hippocampus and cortex by HPLC. The ratios KYN/TRP and KYN/5-HT were used to estimate indoleamine 2,3-dioxygenase (IDO) activity and the balance of both metabolic pathways, respectively. CBD reduced the immobility time in the tail suspension test and increased sucrose preference in the LPS model, without affecting locomotion and central activity in the open-field test. CBD diminished cortical NF-ĸB activation, IL-6 levels in plasma and brain, and the increased KYN/TRP and KYN/5-HT ratios in hippocampus and cortex in the LPS model. Our results demonstrate that CBD produced antidepressant-like effects in the LPS neuroinflammatory model, associated to a reduction in the kynurenine pathway activation, IL-6 levels and NF-ĸB activation. As CBD stands out as a promising antidepressant drug, more research is needed to completely understand its mechanisms of action in depression linked to inflammation.


Subject(s)
Antidepressive Agents/therapeutic use , Cannabidiol/therapeutic use , Depression/drug therapy , Depression/metabolism , Inflammation Mediators/metabolism , Lipopolysaccharides/toxicity , Animals , Antidepressive Agents/pharmacology , Cannabidiol/pharmacology , Depression/chemically induced , Hindlimb Suspension/adverse effects , Hindlimb Suspension/psychology , Inflammation Mediators/antagonists & inhibitors , Male , Mice
9.
Mol Neurobiol ; 57(8): 3498-3507, 2020 Aug.
Article in English | MEDLINE | ID: mdl-32535760

ABSTRACT

Conventional antidepressant drugs elevate the availability of monoamine neurotransmitters. However, these pharmacological therapies have limited efficacy and a slow onset of action as main limitations. New glutamatergic drugs such as ketamine have shown promise as a rapid-acting antidepressant drugs although with adverse effects. The mechanism of action of ketamine is hypothesized to involve a dis-inhibition of cortical pyramidal neurons produced by an stimulation of AMPA receptors by glutamate. In this context, low-impact positive allosteric modulators of the AMPA receptors (a.k.a. ampakines) have been regarded as potential antidepressant drugs. Here, we have examined the behavioral, biochemical, and molecular effects of a low-impact ampakine, CX717. Our results show that CX717 has a rapid (30 min) but short-lasting (up to 24 h) antidepressant-like effect in the forced swim test. Intra-cortical infusion of CX717 increases the efflux of noradrenaline, dopamine, and serotonin, but not glutamate. However, systemic CX717 does not alter these neurotransmitters. CX717 also produced a rapid (up to 1 h) increase of brain-derived neurotrophic factor (BDNF) and a more sustained (up to 6 h) increase of p11. Overall, CX717 appears to possess a rapid but not sustained antidepressant action possibly caused by rapid increases of BDNF and p11.


Subject(s)
Antidepressive Agents/pharmacology , Isoxazoles/pharmacology , Receptors, AMPA/drug effects , Receptors, AMPA/metabolism , Animals , Brain-Derived Neurotrophic Factor/metabolism , Cell-Penetrating Peptides/metabolism , Depression/drug therapy , Glutamic Acid/pharmacology , Male , Rats, Sprague-Dawley , Serotonin/pharmacology
10.
Biomolecules ; 10(6)2020 06 23.
Article in English | MEDLINE | ID: mdl-32585886

ABSTRACT

N-methyl-D-aspartate (NMDA) receptor antagonists such as phencyclidine (PCP), dizocilpine (MK-801) and ketamine have long been considered a model of schizophrenia, both in animals and humans. However, ketamine has been recently approved for treatment-resistant depression, although with severe restrictions. Interestingly, the dosage in both conditions is similar, and positive symptoms of schizophrenia appear before antidepressant effects emerge. Here, we describe the temporal mechanisms implicated in schizophrenia-like and antidepressant-like effects of NMDA blockade in rats, and postulate that such effects may indicate that NMDA receptor antagonists induce similar mechanistic effects, and only the basal pre-drug state of the organism delimitates the overall outcome. Hence, blockade of NMDA receptors in depressive-like status can lead to amelioration or remission of symptoms, whereas healthy individuals develop psychotic symptoms and schizophrenia patients show an exacerbation of these symptoms after the administration of NMDA receptor antagonists.


Subject(s)
Brain/drug effects , Depression/drug therapy , Excitatory Amino Acid Antagonists/pharmacology , Receptors, N-Methyl-D-Aspartate/antagonists & inhibitors , Receptors, N-Methyl-D-Aspartate/metabolism , Schizophrenia/drug therapy , Animals , Brain/metabolism , Depression/metabolism , Dizocilpine Maleate/pharmacology , Humans , Ketamine/pharmacology , Phencyclidine/pharmacology , Schizophrenia/metabolism
11.
Mol Neurobiol ; 57(3): 1704-1715, 2020 Mar.
Article in English | MEDLINE | ID: mdl-31823197

ABSTRACT

We previously reported that the inactivation (cKO) or the stabilization (cST) of ß-catenin in cells expressing the astrocyte-specific glutamate aspartate transporter (GLAST) is associated with the vulnerability or resilience to exhibit anxious/depressive-like behaviors, respectively, and to changes in hippocampal proliferation. Here, we used these cKO and cST ß-catenin mice to study the serotonergic system functionality associated with their behavioral/molecular phenotype. The activity of 5-HT1A receptors was assessed by (+)-8-OH-DPAT-induced hypothermia and [35S]GTPγS binding autoradiography. The animals' response to acute stress and the levels of extracellular serotonin (5-HT) in the medial prefrontal cortex (mPFC) were also assessed. cKO mice presented higher 5-HT1A autoreceptor functionality, lower 5-HT1A heteroreceptor functionality, and a decrease in extracellular 5-HT levels in the mPFC. These neurochemical changes were accompanied with a blunted physiological response to stress-induced hyperthermia. In contrast, cST mice showed a reduced 5-HT1A autoreceptor functionality and higher extracellular 5-HT levels in the mPFC after fluoxetine administration. Moreover, cST mice subjected to chronic corticosterone administration did not show a blunted response to fluoxetine. Our findings suggest the existence of a link between ß-catenin levels and 5-HT1A receptor functionality, which may be relevant to understand the neurobiological bases underlying the vulnerability or resilience to stress-related disorders.


Subject(s)
Anxiety/metabolism , Receptor, Serotonin, 5-HT1A/metabolism , Serotonin/metabolism , beta Catenin/metabolism , Animals , Behavior, Animal/drug effects , Corticosterone/metabolism , Depression/metabolism , Hippocampus/metabolism , Male , Mice , Prefrontal Cortex/metabolism
12.
ACS Chem Neurosci ; 10(7): 3318-3326, 2019 07 17.
Article in English | MEDLINE | ID: mdl-31244055

ABSTRACT

Depression is a chronic and debilitating illness that interferes severely with many human behaviors, and is the leading cause of disability in the world. There is data suggesting that deficits in serotonin neurotransmission can contribute to the development of depression. Indeed, >90% of prescribed antidepressant drugs act by increasing serotonergic transmission at the synapse. However, this increase is offset by a negative feedback operating at the level of the cell body of the serotonin neurons in the raphe nuclei. In the present work, we demonstrate: first, the intracortical infusion of ketamine induced an antidepressant-like effect in the forced swim test, comparable to that produced by systemic ketamine; second, systemic and intracortical ketamine increased serotonin and noradrenaline efflux in the prefrontal cortex, but not in the dorsal raphe nucleus; third, systemic and intracortical administration of ketamine increased the efflux of glutamate in the prefrontal cortex and dorsal raphe nucleus; fourth, systemic ketamine did not alter the functionality of 5-HT1A receptors in the dorsal raphe nucleus. Taken together, these findings suggest that the antidepressant-like effects of ketamine are caused by the stimulation of the prefrontal projection to the dorsal raphe nucleus and locus coeruleus caused by an elevated glutamate in the medial prefrontal cortex, which would stimulate release of serotonin and noradrenaline in the same area. The impact of both monoamines in the antidepressant response to ketamine seems to have different time frames.


Subject(s)
Antidepressive Agents/pharmacology , Depression/drug therapy , Dorsal Raphe Nucleus/drug effects , Ketamine/pharmacology , Norepinephrine/metabolism , Serotonergic Neurons/drug effects , Serotonin/metabolism , Animals , Antidepressive Agents/therapeutic use , Depression/metabolism , Dorsal Raphe Nucleus/metabolism , Glutamic Acid/metabolism , Ketamine/therapeutic use , Male , Motor Activity/drug effects , Prefrontal Cortex/drug effects , Prefrontal Cortex/metabolism , Rats , Rats, Wistar , Receptor, Serotonin, 5-HT1A/metabolism , Serotonergic Neurons/metabolism
13.
Transl Psychiatry ; 8(1): 84, 2018 04 18.
Article in English | MEDLINE | ID: mdl-29666360

ABSTRACT

In a previous study we found that the preferring GluN2A receptor antagonist, NVP-AAM077, elicited rapid antidepressant-like effects in the forced swim test that was related to the release of glutamate and serotonin in the medial prefrontal cortex. In the present work we sought to examine the duration of this behavioral effect as well as the molecular readouts involved. Our results showed that NVP-AAM077 reduced the immobility in the forced swim test 30 min and 24 h after its administration. However, this effect waned 7 days later. The rapid antidepressant-like response seems to be associated with increases in the GluA1 subunit of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors, mammalian target of rapamycin (mTOR) signaling, glia markers such as glial fibrillary acidic protein (GFAP) and excitatory amino acid transporter 1 (EAAT1), and a rapid mobilization of intracellular stores of brain-derived neurotrophic factor (BDNF) in the medial prefrontal cortex.


Subject(s)
Antidepressive Agents/administration & dosage , Depression/drug therapy , Neurons/metabolism , Prefrontal Cortex/metabolism , Quinoxalines/administration & dosage , Receptors, N-Methyl-D-Aspartate/antagonists & inhibitors , Animals , Behavior, Animal/drug effects , Brain-Derived Neurotrophic Factor/metabolism , Male , Neuroglia/drug effects , Neuroglia/metabolism , Neurons/drug effects , Prefrontal Cortex/drug effects , Rats, Sprague-Dawley , Receptors, AMPA , Signal Transduction , Synapses/drug effects , Synapses/metabolism , TOR Serine-Threonine Kinases/metabolism
14.
J Comp Neurol ; 526(8): 1403-1416, 2018 06 01.
Article in English | MEDLINE | ID: mdl-29473165

ABSTRACT

The stress system coordinates the adaptive reactions of the organism to stressors. Therefore, dysfunctions in this circuit may correlate to anxiety-related disorders, including depression. Comprehending the dynamics of this network may lead to a better understanding of the mechanisms that underlie these diseases. The central nucleus of the amygdala (CeA) activates the hypothalamic-pituitary-adrenal axis and brainstem nodes by triggering endocrine, autonomic and behavioral stress responses. The medial prefrontal cortex plays a significant role in regulating reactions to stressors, and is specifically important for limiting fear responses. Brain oscillations reflect neural systems activity. Synchronous neuronal assemblies facilitate communication and synaptic plasticity, mechanisms that cooperatively support the temporal representation and long-term consolidation of information. The purpose of this article was to delve into the interactions between these structures in stress contexts by evaluating changes in oscillatory activity. We particularly analyzed the local field potential in the infralimbic region of the medial prefrontal cortex (IL) in urethane-anesthetized rats after the electrical activation of the central nucleus of the amygdala by mimicking firing rates induced by acute stress. Electrical CeA activation induced a delayed, but significant, change in the IL, with prominent slow waves accompanied by an increase in the theta and gamma activities, and spindles. The phase-amplitude coupling of both slow waves and theta oscillations significantly increased with faster oscillations, including theta-gamma coupling and the nesting of spindles, theta and gamma oscillations in the slow wave cycle. These results are further discussed in neural processing terms of the stress response and memory formation.


Subject(s)
Afferent Pathways/physiology , Amygdala/physiology , Cerebral Cortex/cytology , Electric Stimulation/methods , Evoked Potentials/physiology , Neurons/physiology , Animals , Female , Rats , Rats, Sprague-Dawley , Time Factors
15.
Physiol Rep ; 4(14)2016 Jul.
Article in English | MEDLINE | ID: mdl-27449812

ABSTRACT

Deep brain stimulation (DBS) is a new investigational therapy that has generated positive results in refractory depression. Although the neurochemical and behavioral effects of DBS have been examined, less attention has been paid to the influence of DBS on the network dynamics between different brain areas, which could contribute to its therapeutic effects. Herein, we set out to identify the effects of 1 h DBS in the infralimbic cortex (IL) on the oscillatory network dynamics between hippocampus and basolateral amygdala (BLA), two regions implicated in depression and its treatment. Urethane-anesthetized rats with bilaterally implanted electrodes in the IL were exposed to 1 h constant stimulation of 130 Hz of frequency, 60 µA of constant current intensity and biphasic pulse width of 80 µsec. After a period of baseline recording, local field potentials (LFP) were recorded with formvar-insulated stainless steel electrodes. DBS of the IL increased the power of slow wave (SW, <1.5 Hz) and theta (3-12 Hz) frequencies in the hippocampus and BLA Furthermore, IL DBS caused a precise coupling in different frequency bands between both brain structures. The increases in SW band synchronization in hippocampus and BLA after DBS suggest that these changes may be important for the improvement of depressive behavior. In addition, the augmentation in theta synchrony might contribute to improvement in emotional and cognitive processes.


Subject(s)
Amygdala/physiology , Brain Waves , Deep Brain Stimulation , Electroencephalography , Hippocampus/physiology , Prefrontal Cortex/physiology , Animals , Behavior, Animal , Male , Neural Pathways/physiology , Rats, Wistar , Signal Processing, Computer-Assisted , Time Factors
16.
Neuropharmacology ; 108: 91-102, 2016 09.
Article in English | MEDLINE | ID: mdl-27108934

ABSTRACT

Deep brain stimulation (DBS) is a treatment that has shown some efficacy in treatment-resistant depression. In particular, DBS of the subcallosal cingulate gyrus (Brodmann's area 25, Cg25) has been successfully applied to treat refractory depression. In the rat, we have demonstrated that DBS applied to infralimbic (IL) cortex elevates the levels of glutamate and monoamines in the prefrontal cortex, and requires the stimulation of cortical α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) glutamate receptors for its antidepressant-like effects. However, the molecular targets of IL DBS are not fully known. To gain insight into these pathways, we have investigated whether IL DBS is able to reverse the behavioral, biochemical and molecular changes exhibited by the olfactory bulbectomized (OBX) rat. Our results revealed that 1 h IL DBS diminished hyperlocomotion, hyperemotionality and anhedonia, and increased social interaction shown by the OBX rats. Further, IL DBS increased prefrontal efflux of glutamate and serotonin in both sham-operated and OBX rats. With regard to molecular targets, IL DBS increases the synthesis of brain-derived neurotrophic factor (BDNF) and the GluA1 AMPA receptor subunit, and stimulates the Akt/mammalian target of rapamycin (mTOR) as well as the AMPA receptor/c-AMP response element binding (CREB) pathways. Temsirolimus, a known in vivo mTOR blocker, suppressed the antidepressant-like effect of IL DBS in naïve rats in the forced swim test, thus demonstrating for the first time that mTOR signaling is required for the antidepressant-like effects of IL DBS, which is in line with the antidepressant response of other rapid-acting antidepressant drugs.


Subject(s)
Deep Brain Stimulation/methods , Depression/metabolism , Interpersonal Relations , Prefrontal Cortex/chemistry , Prefrontal Cortex/metabolism , Animals , Brain-Derived Neurotrophic Factor/metabolism , Cyclic AMP Response Element-Binding Protein/metabolism , Depression/surgery , Male , Olfactory Bulb/chemistry , Olfactory Bulb/metabolism , Olfactory Bulb/surgery , Prefrontal Cortex/surgery , Proto-Oncogene Proteins c-akt/metabolism , Rats , Rats, Wistar
17.
Neuropharmacology ; 103: 16-26, 2016 Apr.
Article in English | MEDLINE | ID: mdl-26711860

ABSTRACT

Cannabidiol (CBD), the main non-psychotomimetic component of marihuana, exhibits anxiolytic-like properties in many behavioural tests, although its potential for treating major depression has been poorly explored. Moreover, the mechanism of action of CBD remains unclear. Herein, we have evaluated the effects of CBD following acute and chronic administration in the olfactory bulbectomy mouse model of depression (OBX), and investigated the underlying mechanism. For this purpose, we conducted behavioural (open field and sucrose preference tests) and neurochemical (microdialysis and autoradiography of 5-HT1A receptor functionality) studies following treatment with CBD. We also assayed the pharmacological antagonism of the effects of CBD to dissect out the mechanism of action. Our results demonstrate that CBD exerts fast and maintained antidepressant-like effects as evidenced by the reversal of the OBX-induced hyperactivity and anhedonia. In vivo microdialysis revealed that the administration of CBD significantly enhanced serotonin and glutamate levels in vmPFCx in a different manner depending on the emotional state and the duration of the treatment. The potentiating effect upon neurotransmitters levels occurring immediately after the first injection of CBD might underlie the fast antidepressant-like actions in OBX mice. Both antidepressant-like effect and enhanced cortical 5-HT/glutamate neurotransmission induced by CBD were prevented by 5-HT1A receptor blockade. Moreover, adaptive changes in pre- and post-synaptic 5-HT1A receptor functionality were also found after chronic CBD. In conclusion, our findings indicate that CBD could represent a novel fast antidepressant drug, via enhancing both serotonergic and glutamate cortical signalling through a 5-HT1A receptor-dependent mechanism.


Subject(s)
Anti-Anxiety Agents/administration & dosage , Antidepressive Agents/administration & dosage , Cannabidiol/administration & dosage , Depressive Disorder/metabolism , Glutamic Acid/metabolism , Receptor, Serotonin, 5-HT1A/metabolism , Serotonin/metabolism , Animals , Behavior, Animal/drug effects , Disease Models, Animal , Male , Mice , Mice, Inbred C57BL , Olfactory Bulb/surgery , Prefrontal Cortex/drug effects , Prefrontal Cortex/metabolism , Synaptic Transmission/drug effects
18.
Cereb Cortex ; 26(6): 2778-2789, 2016 06.
Article in English | MEDLINE | ID: mdl-26088969

ABSTRACT

Although deep brain stimulation (DBS) has been used with success in treatment-resistant depression, little is known about its mechanism of action. We examined the antidepressant-like activity of short (1 h) DBS applied to the infralimbic prefrontal cortex in the forced swim test (FST) and the novelty-suppressed feeding test (NSFT). We also used in vivo microdialysis to evaluate the release of glutamate, γ-aminobutyric acid, serotonin, dopamine, and noradrenaline in the prefrontal cortex and c-Fos immunohistochemistry to determine the brain regions activated by DBS. One hour of DBS of the infralimbic prefrontal cortex has antidepressant-like effects in FST and NSFT, and increases prefrontal efflux of glutamate, which would activate AMPA receptors (AMPARs). This effect is specific of the infralimbic area since it is not observed after DBS of the prelimbic subregion. The activation of prefrontal AMPARs would result in a stimulation of prefrontal output to the brainstem, thus increasing serotonin, dopamine, and noradrenaline in the prefrontal cortex. Further, the activation of prefrontal AMPARs is necessary and sufficient condition for the antidepressant response of 1 h DBS.


Subject(s)
Deep Brain Stimulation/methods , Depressive Disorder/metabolism , Depressive Disorder/therapy , Prefrontal Cortex/metabolism , Receptors, AMPA/metabolism , Animals , Depressive Disorder/pathology , Disease Models, Animal , Dopamine/metabolism , Glutamic Acid/metabolism , Immunohistochemistry , Male , Microdialysis , Norepinephrine/metabolism , Prefrontal Cortex/pathology , Proto-Oncogene Proteins c-fos/metabolism , Rats, Wistar , Serotonin/metabolism , gamma-Aminobutyric Acid/metabolism
20.
Neuropsychopharmacology ; 39(11): 2673-80, 2014 Oct.
Article in English | MEDLINE | ID: mdl-24871546

ABSTRACT

Paradoxically, N-methyl-D-aspartate (NMDA) receptor antagonists are used to model certain aspects of schizophrenia as well as to treat refractory depression. However, the role of different subunits of the NMDA receptor in both conditions is poorly understood. Here we used biochemical and behavioral readouts to examine the in vivo prefrontal efflux of serotonin and glutamate as well as the stereotypical behavior and the antidepressant-like activity in the forced swim test elicited by antagonists selective for the GluN2A (NVP-AAM077) and GluN2B (Ro 25-6981) subunits. The effects of the non-subunit selective antagonist, MK-801; were also studied for comparison. The administration of MK-801 dose dependently increased the prefrontal efflux of serotonin and glutamate and markedly increased the stereotypy scores. NVP-AAM077 also increased the efflux of serotonin and glutamate, but without the induction of stereotypies. In contrast, Ro 25-6981 did not change any of the biochemical and behavioral parameters tested. Interestingly, the administration of NVP-AAM077 and Ro 25-6981 alone elicited antidepressant-like activity in the forced swim test, in contrast to the combination of both compounds that evoked marked stereotypies. Our interpretation of the results is that both GluN2A and GluN2B subunits are needed to induce stereotypies, which might be suggestive of potential psychotomimetic effects in humans, but the antagonism of only one of these subunits is sufficient to evoke an antidepressant response. We also propose that GluN2A receptor antagonists could have potential antidepressant activity in the absence of potential psychotomimetic effects.


Subject(s)
Depressive Disorder, Treatment-Resistant/drug therapy , Disease Models, Animal , Excitatory Amino Acid Antagonists/pharmacology , Receptors, N-Methyl-D-Aspartate/metabolism , Schizophrenia , Animals , Antidepressive Agents/pharmacology , Depressive Disorder, Treatment-Resistant/physiopathology , Dizocilpine Maleate/pharmacology , Dose-Response Relationship, Drug , Glutamic Acid/metabolism , Male , Phenols/pharmacology , Piperidines/pharmacology , Prefrontal Cortex/drug effects , Prefrontal Cortex/physiopathology , Quinoxalines/pharmacology , Rats, Wistar , Schizophrenia/physiopathology , Serotonin/metabolism , Stereotyped Behavior/drug effects , Stereotyped Behavior/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...