Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 17 de 17
Filter
Add more filters










Publication year range
2.
J Clin Invest ; 133(9)2023 05 01.
Article in English | MEDLINE | ID: mdl-36862513

ABSTRACT

The renal actions of parathyroid hormone (PTH) promote 1,25-vitamin D generation; however, the signaling mechanisms that control PTH-dependent vitamin D activation remain unknown. Here, we demonstrated that salt-inducible kinases (SIKs) orchestrated renal 1,25-vitamin D production downstream of PTH signaling. PTH inhibited SIK cellular activity by cAMP-dependent PKA phosphorylation. Whole-tissue and single-cell transcriptomics demonstrated that both PTH and pharmacologic SIK inhibitors regulated a vitamin D gene module in the proximal tubule. SIK inhibitors increased 1,25-vitamin D production and renal Cyp27b1 mRNA expression in mice and in human embryonic stem cell-derived kidney organoids. Global- and kidney-specific Sik2/Sik3 mutant mice showed Cyp27b1 upregulation, elevated serum 1,25-vitamin D, and PTH-independent hypercalcemia. The SIK substrate CRTC2 showed PTH and SIK inhibitor-inducible binding to key Cyp27b1 regulatory enhancers in the kidney, which were also required for SIK inhibitors to increase Cyp27b1 in vivo. Finally, in a podocyte injury model of chronic kidney disease-mineral bone disorder (CKD-MBD), SIK inhibitor treatment stimulated renal Cyp27b1 expression and 1,25-vitamin D production. Together, these results demonstrated a PTH/SIK/CRTC signaling axis in the kidney that controls Cyp27b1 expression and 1,25-vitamin D synthesis. These findings indicate that SIK inhibitors might be helpful for stimulation of 1,25-vitamin D production in CKD-MBD.


Subject(s)
Chronic Kidney Disease-Mineral and Bone Disorder , Renal Insufficiency, Chronic , Mice , Humans , Animals , Vitamin D/metabolism , Parathyroid Hormone/genetics , Parathyroid Hormone/metabolism , Calcium/metabolism , 25-Hydroxyvitamin D3 1-alpha-Hydroxylase/metabolism , Chronic Kidney Disease-Mineral and Bone Disorder/metabolism , Kidney/metabolism , Renal Insufficiency, Chronic/metabolism , Homeostasis , Protein Serine-Threonine Kinases/genetics , Protein Serine-Threonine Kinases/metabolism
3.
Cell Metab ; 35(3): 487-503.e7, 2023 03 07.
Article in English | MEDLINE | ID: mdl-36841242

ABSTRACT

Multiple cancers regulate oxidative stress by activating the transcription factor NRF2 through mutation of its negative regulator, KEAP1. NRF2 has been studied extensively in KEAP1-mutant cancers; however, the role of this pathway in cancers with wild-type KEAP1 remains poorly understood. To answer this question, we induced NRF2 via pharmacological inactivation of KEAP1 in a panel of 50+ non-small cell lung cancer cell lines. Unexpectedly, marked decreases in viability were observed in >13% of the cell lines-an effect that was rescued by NRF2 ablation. Genome-wide and targeted CRISPR screens revealed that NRF2 induces NADH-reductive stress, through the upregulation of the NAD+-consuming enzyme ALDH3A1. Leveraging these findings, we show that cells treated with KEAP1 inhibitors or those with endogenous KEAP1 mutations are selectively vulnerable to Complex I inhibition, which impairs NADH oxidation capacity and potentiates reductive stress. Thus, we identify reductive stress as a metabolic vulnerability in NRF2-activated lung cancers.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , NF-E2-Related Factor 2 , Humans , Carcinoma, Non-Small-Cell Lung/metabolism , Cell Line, Tumor , Kelch-Like ECH-Associated Protein 1/metabolism , Lung Neoplasms/metabolism , NAD/metabolism , NF-E2-Related Factor 2/genetics , NF-E2-Related Factor 2/metabolism , Oxidative Stress/genetics , Signal Transduction
4.
Science ; 377(6604): eabm5551, 2022 07 22.
Article in English | MEDLINE | ID: mdl-35862544

ABSTRACT

To accelerate the translation of cancer nanomedicine, we used an integrated genomic approach to improve our understanding of the cellular processes that govern nanoparticle trafficking. We developed a massively parallel screen that leverages barcoded, pooled cancer cell lines annotated with multiomic data to investigate cell association patterns across a nanoparticle library spanning a range of formulations with clinical potential. We identified both materials properties and cell-intrinsic features that mediate nanoparticle-cell association. Using machine learning algorithms, we constructed genomic nanoparticle trafficking networks and identified nanoparticle-specific biomarkers. We validated one such biomarker: gene expression of SLC46A3, which inversely predicts lipid-based nanoparticle uptake in vitro and in vivo. Our work establishes the power of integrated screens for nanoparticle delivery and enables the identification and utilization of biomarkers to rationally design nanoformulations.


Subject(s)
Antineoplastic Agents , Biomarkers, Pharmacological , Copper Transport Proteins , Drug Compounding , Nanoparticle Drug Delivery System , Nanoparticles , Neoplasms , Animals , Antineoplastic Agents/administration & dosage , Antineoplastic Agents/metabolism , Cell Line, Tumor , Copper Transport Proteins/genetics , Gene Expression , Genomics , Humans , Liposomes , Mice , Nanomedicine , Nanoparticles/administration & dosage , Nanoparticles/metabolism , Neoplasms/drug therapy , Neoplasms/genetics , Neoplasms/metabolism
5.
J Invest Dermatol ; 142(7): 1956-1965.e2, 2022 07.
Article in English | MEDLINE | ID: mdl-34890627

ABSTRACT

Cutaneous squamous cell carcinoma (cSCC) comprises 15‒20% of all skin cancers and has a well-defined progression sequence from precancerous actinic keratosis to invasive cSCC. To identify targets for chemoprevention, we previously reported a cross-species analysis to identify the transcriptional drivers of cSCC development and identified miR-181a as a potential oncomiR. We show that the upregulation of miR-181a promotes multiple protumorigenic properties by targeting an understudied component of TGFß signaling, TGFßR3. miR-181a and TGFßR3 are upregulated and downregulated, respectively, in cSCC. miR-181a overexpression (OE) and TGFßR3 knockdown (KD) significantly suppresses UV-induced apoptosis in HaCaT cells and in primary normal human epidermal keratinocytes. In addition, OE of miR-181a or KD of TGFßR3 by short hairpin RNA enhances anchorage-independent survival. miR-181a OE or TGFßR3 KD enhances cellular migration and invasion and upregulation of epithelial‒mesenchymal transition markers. Luciferase reporter assays demonstrate that miR-181a directly targets the 3'-untranslated region of TGFßR3. miR-181a upregulates phosphorylated SMAD3 levels after TGFß2 administration and results in elevated SNAIL and SLUG expression. Finally, we confirm in vivo that miR-181a inhibition compromises tumor growth. Importantly, these phenotypes can be reversed with TGFßR3 OE or KD in the context of miR-181a OE or KD, respectively, further highlighting the physiologic relevance of this regulation in cSCC.


Subject(s)
Carcinoma, Squamous Cell , MicroRNAs , Proteoglycans , Receptors, Transforming Growth Factor beta , Skin Neoplasms , 3' Untranslated Regions/genetics , Carcinoma, Squamous Cell/pathology , Cell Line, Tumor , Cell Proliferation/genetics , Gene Expression Regulation, Neoplastic , Humans , MicroRNAs/genetics , Proteoglycans/genetics , Receptors, Transforming Growth Factor beta/genetics , Skin Neoplasms/pathology
6.
J Invest Dermatol ; 141(12): 2782-2784, 2021 12.
Article in English | MEDLINE | ID: mdl-34565559

ABSTRACT

In a new article in the Journal of Investigative Dermatology, Wang et al. (2021) report that mitochondrial quality control modulates responses to endoplasmic reticulum (ER) stress in melanoma. They implicate a linear pathway of XBP1, MARCH5, and MFN2 that act together to regulate mitochondrial fission and mitophagy and ultimately mediate melanoma cell sensitivity to ER stress. This work informs therapeutic combinations and biomarker strategies for targeting melanoma organellar homeostasis as well as for life‒death decisions.


Subject(s)
Endoplasmic Reticulum Stress , Melanoma , Endoplasmic Reticulum/metabolism , GTP Phosphohydrolases/genetics , GTP Phosphohydrolases/metabolism , Humans , Melanoma/metabolism , Mitochondria , Mitochondrial Proteins/metabolism , Mitophagy
7.
Cell Metab ; 33(6): 1248-1263.e9, 2021 06 01.
Article in English | MEDLINE | ID: mdl-33651980

ABSTRACT

Forward genetic screens across hundreds of cancer cell lines have started to define the genetic dependencies of proliferating human cells and how these vary by genotype and lineage. Most screens, however, have been carried out in culture media that poorly reflect metabolite availability in human blood. Here, we performed CRISPR-based screens in traditional versus human plasma-like medium (HPLM). Sets of conditionally essential genes in human cancer cell lines span several cellular processes and vary with both natural cell-intrinsic diversity and the combination of basal and serum components that comprise typical media. Notably, we traced the causes for each of three conditional CRISPR phenotypes to the availability of metabolites uniquely defined in HPLM versus conventional media. Our findings reveal the profound impact of medium composition on gene essentiality in human cells, and also suggest general strategies for using genetic screens in HPLM to uncover new cancer vulnerabilities and gene-nutrient interactions.


Subject(s)
CRISPR-Cas Systems , Culture Media , Cell Line, Tumor , Humans
8.
Proc Natl Acad Sci U S A ; 118(4)2021 01 26.
Article in English | MEDLINE | ID: mdl-33483422

ABSTRACT

In mammalian cells, nutrients and growth factors signal through an array of upstream proteins to regulate the mTORC1 growth control pathway. Because the full complement of these proteins has not been systematically identified, we developed a FACS-based CRISPR-Cas9 genetic screening strategy to pinpoint genes that regulate mTORC1 activity. Along with almost all known positive components of the mTORC1 pathway, we identified many genes that impact mTORC1 activity, including DCAF7, CSNK2B, SRSF2, IRS4, CCDC43, and HSD17B10 Using the genome-wide screening data, we generated a focused sublibrary containing single guide RNAs (sgRNAs) targeting hundreds of genes and carried out epistasis screens in cells lacking nutrient- and stress-responsive mTORC1 modulators, including GATOR1, AMPK, GCN2, and ATF4. From these data, we pinpointed mitochondrial function as a particularly important input into mTORC1 signaling. While it is well appreciated that mitochondria signal to mTORC1, the mechanisms are not completely clear. We find that the kinases AMPK and HRI signal, with varying kinetics, mitochondrial distress to mTORC1, and that HRI acts through the ATF4-dependent up-regulation of both Sestrin2 and Redd1. Loss of both AMPK and HRI is sufficient to render mTORC1 signaling largely resistant to mitochondrial dysfunction induced by the ATP synthase inhibitor oligomycin as well as the electron transport chain inhibitors piericidin and antimycin. Taken together, our data reveal a catalog of genes that impact the mTORC1 pathway and clarify the multifaceted ways in which mTORC1 senses mitochondrial dysfunction.


Subject(s)
Activating Transcription Factor 4/genetics , Gene Editing/methods , Mechanistic Target of Rapamycin Complex 1/genetics , Mitochondria/genetics , Protein Serine-Threonine Kinases/genetics , 3-Hydroxyacyl CoA Dehydrogenases/genetics , 3-Hydroxyacyl CoA Dehydrogenases/metabolism , Activating Transcription Factor 4/metabolism , Adaptor Proteins, Signal Transducing/genetics , Adaptor Proteins, Signal Transducing/metabolism , Amino Acids/deficiency , Amino Acids/pharmacology , Antimycin A/analogs & derivatives , Antimycin A/pharmacology , CRISPR-Associated Protein 9/genetics , CRISPR-Associated Protein 9/metabolism , CRISPR-Cas Systems , Culture Media/chemistry , Culture Media/pharmacology , Gene Expression Regulation , Genome, Human , Glucose/deficiency , Glucose/pharmacology , HEK293 Cells , Humans , Insulin Receptor Substrate Proteins/genetics , Insulin Receptor Substrate Proteins/metabolism , Mechanistic Target of Rapamycin Complex 1/metabolism , Mitochondria/drug effects , Mitochondria/metabolism , Mitochondria/pathology , Neoplasm Proteins/genetics , Neoplasm Proteins/metabolism , Oligomycins/pharmacology , Protein Serine-Threonine Kinases/metabolism , RNA, Guide, Kinetoplastida/genetics , RNA, Guide, Kinetoplastida/metabolism , Serine-Arginine Splicing Factors/genetics , Serine-Arginine Splicing Factors/metabolism , Signal Transduction , eIF-2 Kinase/genetics , eIF-2 Kinase/metabolism
9.
J Invest Dermatol ; 141(1): 124-131.e2, 2021 01.
Article in English | MEDLINE | ID: mdl-32553564

ABSTRACT

The measurement of UV-induced DNA damage as a dosimeter of exposure and predictor of skin cancer risk has been proposed by multiple groups. Although UV-induced mutations and adducts are present in normal-appearing UV-exposed epidermis, sampling normal nonlesional skin requires noninvasive methods to extract epidermal DNA for analysis. Here, we demonstrate the feasibility of such an approach, termed surfactant-based tissue acquisition for molecular profiling. Sampling in patients was performed using a felt-tip pen soaked in a mixture of surfactants (Brij-30/N-decyl-N,N-dimethyl-3-ammonio-1-propanesulfonate). In mice, we show that the epidermis can be selectively removed without scarring, with complete healing within 2 weeks. We exposed hairless mice to low-dose UV radiation over a period of 3 months and serially sampled them through up to 2 months following the cessation of UV exposure, observing a progressive increase in a UV signature mutational burden. To test whether surfactant-based tissue acquisition for molecular profiling could be applied to human patients, samples were collected from sun-exposed and sun-protected areas, which were then subjected to high-depth targeted exome sequencing. Extensive UV-driven mosaicism and substantially increased mutational loads in sun-exposed versus sun-protected areas were observed, suggesting that genomic measures, as an integrated readout of DNA damage, repair, and clonal expansion, may be informative markers of UV exposure.


Subject(s)
Epidermis/metabolism , Genetic Markers/genetics , Genomics/methods , Skin Neoplasms/genetics , Ultraviolet Rays/adverse effects , Animals , DNA Damage , Epidermis/pathology , Epidermis/radiation effects , Humans , Skin Neoplasms/metabolism , Skin Neoplasms/pathology
10.
Nature ; 588(7839): 699-704, 2020 12.
Article in English | MEDLINE | ID: mdl-33208952

ABSTRACT

Dozens of genes contribute to the wide variation in human pigmentation. Many of these genes encode proteins that localize to the melanosome-the organelle, related to the lysosome, that synthesizes pigment-but have unclear functions1,2. Here we describe MelanoIP, a method for rapidly isolating melanosomes and profiling their labile metabolite contents. We use this method to study MFSD12, a transmembrane protein of unknown molecular function that, when suppressed, causes darker pigmentation in mice and humans3,4. We find that MFSD12 is required to maintain normal levels of cystine-the oxidized dimer of cysteine-in melanosomes, and to produce cysteinyldopas, the precursors of pheomelanin synthesis made in melanosomes via cysteine oxidation5,6. Tracing and biochemical analyses show that MFSD12 is necessary for the import of cysteine into melanosomes and, in non-pigmented cells, lysosomes. Indeed, loss of MFSD12 reduced the accumulation of cystine in lysosomes of fibroblasts from patients with cystinosis, a lysosomal-storage disease caused by inactivation of the lysosomal cystine exporter cystinosin7-9. Thus, MFSD12 is an essential component of the cysteine importer for melanosomes and lysosomes.


Subject(s)
Cysteine/metabolism , Lysosomes/metabolism , Melanosomes/metabolism , Membrane Proteins/metabolism , Biological Transport , Cell Fractionation , Cell Line , Cystine/metabolism , Cystinosis/genetics , Cystinosis/metabolism , Fibroblasts , Humans , Melanins/metabolism , Membrane Proteins/deficiency , Membrane Proteins/genetics , Oxidation-Reduction
11.
Methods Mol Biol ; 1907: 125-136, 2019.
Article in English | MEDLINE | ID: mdl-30542996

ABSTRACT

In this protocol, pooled sgRNA libraries targeting thousands of genes are computationally designed, generated using microarray-based synthesis techniques, and packaged into lentiviral particles. Target cells of interest are transduced with the lentiviral sgRNA pools to generate a collection of knockout mutants-via Cas9-mediated genomic cleavage-and screened for a phenotype of interest. The relative abundance of each mutant in the population can be monitored over time through high-throughput sequencing of the integrated sgRNA expression cassettes. Using this technique, we outline strategies for the identification of cancer driver genes and genes mediating drug response.


Subject(s)
CRISPR-Cas Systems , Genome, Human , Genome-Wide Association Study/methods , Genomics/methods , High-Throughput Nucleotide Sequencing/methods , Neoplasm Proteins/genetics , Neoplasms/genetics , Gene Knockout Techniques , Humans , Neoplasm Proteins/antagonists & inhibitors , Neoplasms/diagnosis , Phenotype , Tumor Cells, Cultured
12.
Nat Commun ; 7: 12601, 2016 08 30.
Article in English | MEDLINE | ID: mdl-27574101

ABSTRACT

Cutaneous squamous cell carcinoma (cuSCC) comprises 15-20% of all skin cancers, accounting for over 700,000 cases in USA annually. Most cuSCC arise in association with a distinct precancerous lesion, the actinic keratosis (AK). To identify potential targets for molecularly targeted chemoprevention, here we perform integrated cross-species genomic analysis of cuSCC development through the preneoplastic AK stage using matched human samples and a solar ultraviolet radiation-driven Hairless mouse model. We identify the major transcriptional drivers of this progression sequence, showing that the key genomic changes in cuSCC development occur in the normal skin to AK transition. Our data validate the use of this ultraviolet radiation-driven mouse cuSCC model for cross-species analysis and demonstrate that cuSCC bears deep molecular similarities to multiple carcinogen-driven SCCs from diverse sites, suggesting that cuSCC may serve as an effective, accessible model for multiple SCC types and that common treatment and prevention strategies may be feasible.


Subject(s)
Antineoplastic Agents/therapeutic use , Carcinoma, Squamous Cell/genetics , Keratosis, Actinic/pathology , Precancerous Conditions/pathology , Skin Neoplasms/genetics , Animals , Carcinogenesis/genetics , Carcinoma, Squamous Cell/etiology , Carcinoma, Squamous Cell/prevention & control , DNA Mutational Analysis , Disease Progression , Female , Gene Expression Profiling , Genomics , High-Throughput Nucleotide Sequencing , Humans , Mice , Mice, Hairless , Molecular Targeted Therapy/methods , Precancerous Conditions/genetics , Sequence Analysis, RNA , Skin/pathology , Skin Neoplasms/etiology , Skin Neoplasms/prevention & control , Ultraviolet Rays/adverse effects , Exome Sequencing
14.
Oncotarget ; 7(21): 30453-60, 2016 May 24.
Article in English | MEDLINE | ID: mdl-27028853

ABSTRACT

BRAF inhibitor (BRAFi) therapy is associated with the induction of neoplasia, most commonly cutaneous squamous cell carcinoma (cuSCC). This toxicity is explained in part by "paradoxical ERK activation," or the hyperactivation of ERK signaling by BRAFi in BRAF wild-type cells. However, the rate of cuSCC induction varies widely among BRAFi. To explore this mechanistically, we profiled paradoxical ERK activation by vemurafenib, dabrafenib, encorafenib (LGX818), and PLX8394, demonstrating that vemurafenib induces ERK activation the greatest, while dabrafenib and encorafenib have higher "paradox indices", defined as the pERK activation EC80 divided by the IC80 against A375, corresponding to wider therapeutic windows for achieving tumor inhibition without paradoxical ERK activation. Our results identify differences in the paradox indices of these compounds as a potential mechanism for the differences in cuSCC induction rates and highlight the utility of using ERK activity as a biomarker for maximizing the clinical utility of BRAFi.


Subject(s)
Carcinoma, Squamous Cell/chemically induced , MAP Kinase Signaling System/drug effects , Protein Kinase Inhibitors/adverse effects , Proto-Oncogene Proteins B-raf/antagonists & inhibitors , Skin Neoplasms/chemically induced , Apoptosis/drug effects , Carbamates/adverse effects , Cell Line , Cell Line, Tumor , Enzyme Activation/drug effects , Heterocyclic Compounds, 2-Ring/adverse effects , Humans , Imidazoles/adverse effects , Indoles/adverse effects , Mitogen-Activated Protein Kinase 1/metabolism , Oximes/adverse effects , Sulfonamides/adverse effects , Vemurafenib
15.
ACS Med Chem Lett ; 6(1): 47-52, 2015 Jan 08.
Article in English | MEDLINE | ID: mdl-25589929

ABSTRACT

Protein kinases are mutated or otherwise rendered constitutively active in numerous cancers where they are attractive therapeutic targets with well over a dozen kinase inhibitors now being used in therapy. While fluorescent sensors have capacity to measure changes in kinase activity, surprisingly they have not been utilized for biomarker studies. A first-generation peptide sensor for ERK based on the Sox fluorophore is described. This sensor called ERK-sensor-D1 possesses high activity toward ERK and more than 10-fold discrimination over other MAPKs. The sensor can rapidly quantify ERK activity in cell lysates and monitor ERK pathway engagement by BRAF and MEK inhibitors in cultured melanoma cell lines. The dynamic range of the sensor assay allows ERK activities that have potential for profound clinical consequences to be rapidly distinguished.

16.
Mol Cancer Ther ; 13(1): 221-9, 2014 Jan.
Article in English | MEDLINE | ID: mdl-24170769

ABSTRACT

Sorafenib is U.S. Food and Drug Adminstration-approved for the treatment of renal cell carcinoma and hepatocellular carcinoma and has been combined with numerous other targeted therapies and chemotherapies in the treatment of many cancers. Unfortunately, as with other RAF inhibitors, patients treated with sorafenib have a 5% to 10% rate of developing cutaneous squamous cell carcinoma (cSCC)/keratoacanthomas. Paradoxical activation of extracellular signal-regulated kinase (ERK) in BRAF wild-type cells has been implicated in RAF inhibitor-induced cSCC. Here, we report that sorafenib suppresses UV-induced apoptosis specifically by inhibiting c-jun-NH(2)-kinase (JNK) activation through the off-target inhibition of leucine zipper and sterile alpha motif-containing kinase (ZAK). Our results implicate suppression of JNK signaling, independent of the ERK pathway, as an additional mechanism of adverse effects of sorafenib. This has broad implications for combination therapies using sorafenib with other modalities that induce apoptosis.


Subject(s)
Carcinoma, Squamous Cell/drug therapy , Niacinamide/analogs & derivatives , Phenylurea Compounds/adverse effects , Protein Kinases/metabolism , Skin Neoplasms/drug therapy , Antineoplastic Agents/administration & dosage , Antineoplastic Agents/adverse effects , Apoptosis/drug effects , Carcinoma, Squamous Cell/chemically induced , Carcinoma, Squamous Cell/genetics , Carcinoma, Squamous Cell/pathology , Cell Line, Tumor , Cell Proliferation/drug effects , Cell Survival/drug effects , Humans , MAP Kinase Kinase 4/metabolism , MAP Kinase Kinase Kinases , MAP Kinase Signaling System/drug effects , Niacinamide/administration & dosage , Niacinamide/adverse effects , Phenylurea Compounds/administration & dosage , Protein Kinases/genetics , Skin Neoplasms/chemically induced , Skin Neoplasms/genetics , Skin Neoplasms/pathology , Sorafenib , raf Kinases/genetics , raf Kinases/metabolism
17.
Elife ; 2: e00969, 2013 Nov 05.
Article in English | MEDLINE | ID: mdl-24192036

ABSTRACT

Vemurafenib and dabrafenib selectively inhibit the v-Raf murine sarcoma viral oncogene homolog B1 (BRAF) kinase, resulting in high response rates and increased survival in melanoma. Approximately 22% of individuals treated with vemurafenib develop cutaneous squamous cell carcinoma (cSCC) during therapy. The prevailing explanation for this is drug-induced paradoxical ERK activation, resulting in hyperproliferation. Here we show an unexpected and novel effect of vemurafenib/PLX4720 in suppressing apoptosis through the inhibition of multiple off-target kinases upstream of c-Jun N-terminal kinase (JNK), principally ZAK. JNK signaling is suppressed in multiple contexts, including in cSCC of vemurafenib-treated patients, as well as in mice. Expression of a mutant ZAK that cannot be inhibited reverses the suppression of JNK activation and apoptosis. Our results implicate suppression of JNK-dependent apoptosis as a significant, independent mechanism that cooperates with paradoxical ERK activation to induce cSCC, suggesting broad implications for understanding toxicities associated with BRAF inhibitors and for their use in combination therapies. DOI: http://dx.doi.org/10.7554/eLife.00969.001.


Subject(s)
Apoptosis/drug effects , Imidazoles/pharmacology , Indoles/pharmacology , MAP Kinase Kinase 4/antagonists & inhibitors , Oximes/pharmacology , Proto-Oncogene Proteins B-raf/antagonists & inhibitors , Signal Transduction/drug effects , Sulfonamides/pharmacology , Animals , Humans , MAP Kinase Kinase 4/metabolism , Mice , Mice, Hairless , Vemurafenib
SELECTION OF CITATIONS
SEARCH DETAIL
...