Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Biomacromolecules ; 10(10): 2817-22, 2009 Oct 12.
Article in English | MEDLINE | ID: mdl-19754135

ABSTRACT

(13)C-Perlabeled cellulose was obtained in a seven-step approach from (13)C(6)-labeled d-glucose with a cationic ring-opening polymerization as the key step. Isopropylidene protection, benzylation of the remaining free 3-O-position and subsequent deprotection afforded 3-O-benzyl-(13)C(6)-glucose (2). Regioselective bis-pivaloylation followed by subsequent ortho-esterification provided the precursor for the cationic ring-opening polymerization, 3-O-benzyl-(13)C(6)-glucopyranose 1,2,4-orthopivalate (4). The actual polymerization step gave a stereo- and regioregular (13)C-perlabeled (1-->4)-beta-glucopyranan derivative, which was deprotected into fully labeled (13)C-cellulose, as the cellulose II allomorph with a DP of 40, in an overall 28% yield. All reaction steps were optimized beforehand with nonlabeled compounds toward high yields and high reproducibility and the final compound was comprehensively analytically characterized.


Subject(s)
Carbon Isotopes/chemistry , Cellulose/chemical synthesis , Polymers/chemistry , Chromatography, Thin Layer , Esterification , Gas Chromatography-Mass Spectrometry , Magnetic Resonance Spectroscopy , X-Ray Diffraction
2.
J Org Chem ; 70(9): 3472-83, 2005 Apr 29.
Article in English | MEDLINE | ID: mdl-15844980

ABSTRACT

[structure: see text] Chromanol-type compounds act as antioxidants in biological systems by reduction of oxygen-centered radicals. Their efficiency is determined by the reaction rate constants for the primary antioxidative reaction as well as for disproportionation and recycling reactions of the antioxidant-derived radicals. We studied the reaction kinetics of three novel chromanols: cis- and trans-oxachromanol and the dimeric twin-chromanol, as well as ubichromanol and ubichromenol, in comparison to alpha-tocopherol and pentamethylchromanol. The antioxidant-derived radicals were identified by optical and electron spin resonance spectroscopy (ESR). The kinetics of the primary antioxidative reaction and the disproportionation of the chromanoxyl radicals were assessed by stopped-flow photometry in different organic solvents to simulate the different polarities associated with biomembranes. Furthermore, the reduction of the chromanoxyl radicals by ubiquinol and ascorbate was measured after laser-induced one-electron chromanol oxidation in ethanol and in a micellar system, respectively. The rate constants showed that twin-chromanol had better radical scavenging properties than alpha-tocopherol and a significantly slower disproportionation rate of its corresponding chromanoxyl radical. In addition, the radical derived from twin-chromanol is reduced by ubiquinol and ascorbate at a faster rate than the tocopheroxyl radical. Finally, twin-chromanol can deliver twice as many reducing equivalents, which makes this compound a promising new candidate as artificial antioxidant in biological systems.


Subject(s)
Antioxidants/chemistry , Antioxidants/pharmacology , Chromans/chemistry , Chromans/pharmacology , Electron Spin Resonance Spectroscopy , Kinetics , Molecular Structure , Oxidation-Reduction , alpha-Tocopherol/chemistry , alpha-Tocopherol/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...