Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Biochem Pharmacol ; 212: 115565, 2023 06.
Article in English | MEDLINE | ID: mdl-37086811

ABSTRACT

Breast cancer (BC) is one of the leading causes of cancer-related deaths in women worldwide. The tumor microenvironment (TME) plays a crucial role in the progression and metastasis of BC. A significant proportion of BC is characterized by a hypoxic TME, which contributes to the development of drug resistance and cancer recurrence. Sanguinarine (SAN), an isoquinoline alkaloid found in Papaver plants, has shown promise as an anticancer agent. The present review focuses on exploring the molecular mechanisms of hypoxic TME in BC and the potential of SAN as a therapeutic option. The review presents the current understanding of the hypoxic TME, its signaling pathways, and its impact on the progression of BC. Additionally, the review elaborates on the mechanisms of action of SAN in BC, including its effects on vital cellular processes such as proliferation, migration, drug resistance, and tumor-induced immune suppression. The review highlights the importance of addressing hypoxic TME in treating BC and the potential of SAN as a promising therapeutic option.


Subject(s)
Breast Neoplasms , Female , Humans , Breast Neoplasms/drug therapy , Benzophenanthridines/pharmacology , Benzophenanthridines/therapeutic use , Isoquinolines/pharmacology , Isoquinolines/therapeutic use , Hypoxia , Tumor Microenvironment
2.
Int Immunopharmacol ; 118: 110015, 2023 May.
Article in English | MEDLINE | ID: mdl-36931171

ABSTRACT

FOXP3 is a key transcription factor in the regulation of immune responses, and recent studies have uncovered the complexity and diversity of FOXP3 isoforms in various cancers, including metastatic breast cancers (mBCs). It has dual role in the tumor microenvironment of mBCs. This review aims to provide novel insights into the complexity and diversity of FOXP3 isoforms in the regulation of the immune response in breast cancer. We discuss the molecular mechanisms underlying the function of FOXP3 isoforms, including their interaction with other proteins, regulation of gene expression, and impact on the immune system. We also highlight the importance of understanding the role of FOXP3 isoforms in breast cancer and the potential for using them as therapeutic targets. This review highlights the crucial role of FOXP3 isoforms in the regulation of the immune response in breast cancer and underscores the need for further research to fully comprehend their complex and diverse functions.


Subject(s)
Breast Neoplasms , Humans , Female , T-Lymphocytes, Regulatory , Immunity , Protein Isoforms/genetics , Protein Isoforms/metabolism , Forkhead Transcription Factors/genetics , Forkhead Transcription Factors/metabolism , Tumor Microenvironment
3.
Toxicol Res ; 37(1): 125-134, 2021 Jan.
Article in English | MEDLINE | ID: mdl-33489863

ABSTRACT

The present study investigates the protective effects of testosterone against reproductive toxicity induced by cypermethrin (50 mg/kg body weight) in rats. Significant reduction in the testicular and accessory sex organ weights were observed in cypermethrin-treated rats over controls. Cypermethrin intoxication significantly reduced testicular daily sperm count, epididymal sperm count, sperm motility, sperm viability and HOS-tail coiled sperm accompanied by significant reduction in the activity levels of testicular steroidogenic enzymes such as 3ß- and 17ß- hydroxysteroid dehydrogenases in rats as compared to controls. Further, qPCR studies indicated that the mRNA expression levels of steroidogenic acute regulatory protein (StAR) significantly decreased in cypermethrin-treated rats over controls. Molecular docking analysis indicated that the binding affinity of cypermethrin (- 11.2 kcal/mol) towards StAR protein was greater as compared to its natural ligand, cholesterol (- 8.2 kcal/mol) suggesting improper cholesterol channeling across the testis. Significant reduction in the circulatory levels of testosterone was also recorded in cypermethrin-exposed rats. An increase in pre- and post-implantation loss was observed in rats cohabited with cypermethrin-treated rats. On the other hand, testosterone (4.16 mg/kg body weight) treatment ameliorated cypermethrin-induced reprotoxic effects in rats. To conclude, cypermethrin-induced deterioration of suppressed reproductive performance in male rats could be linked to its antiandrogenic effects and on the other hand, testosterone-mediated protection of male reproductive health in cypermethrin-treated rats at least in part occurs via restoration of testosterone biosynthesis, spermatogenesis and sperm maturation events.

SELECTION OF CITATIONS
SEARCH DETAIL
...