Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Int ; 114: 297-306, 2018 05.
Article in English | MEDLINE | ID: mdl-29529581

ABSTRACT

BACKGROUND: The aim of this study was to quantify RF-EMF exposure applying a tested protocol of RF-EMF exposure measurements using portable devices with a high sampling rate in different microenvironments of Switzerland, Ethiopia, Nepal, South Africa, Australia and the United States of America. METHOD: We used portable measurement devices for assessing RF-EMF exposure in 94 outdoor microenvironments and 18 public transport vehicles. The measurements were taken either by walking with a backpack with the devices at the height of the head and a distance of 20-30 cm from the body, or driving a car with the devices mounted on its roof, which was 170-180 cm above the ground. The measurements were taken for about 30 min while walking and about 15-20 min while driving in each microenvironment, with a sampling rate of once every 4 s (ExpoM-RF) and 5 s (EME Spy 201). RESULTS: Mean total RF-EMF exposure in various outdoor microenvironments varied between 0.23 V/m (non-central residential area in Switzerland) and 1.85 V/m (university area in Australia), and across modes of public transport between 0.32 V/m (bus in rural area in Switzerland) and 0.86 V/m (Auto rickshaw in urban area in Nepal). For most outdoor areas the major exposure contribution was from mobile phone base stations. Otherwise broadcasting was dominant. Uplink from mobile phone handsets was generally very small, except in Swiss trains and some Swiss buses. CONCLUSIONS: This study demonstrates high RF-EMF variability between the 94 selected microenvironments from all over the world. Exposure levels tended to increase with increasing urbanity. In most microenvironments downlink from mobile phone base stations is the most relevant contributor.


Subject(s)
Electromagnetic Fields , Environmental Exposure/analysis , Environmental Monitoring/methods , Radio Waves , Australia , Automobile Driving , Humans , Nepal , South Africa , Switzerland , Walking
2.
J Chromatogr A ; 1385: 28-34, 2015 Mar 13.
Article in English | MEDLINE | ID: mdl-25670414

ABSTRACT

The ability to rapidly screen complex libraries of pharmacological modulators is paramount to modern drug discovery efforts. This task is particularly challenging for agents that interact with lipid bilayers or membrane proteins due to the limited chemical, physical, and temporal stability of conventional lipid-based chromatographic stationary phases. Here, we describe the preparation and characterization of a novel stationary phase material composed of highly stable, polymeric-phospholipid bilayers self-assembled onto silica microparticles. Polymer-lipid membranes were prepared by photochemical or redox initiated polymerization of 1,2-bis[10-(2',4'-hexadieoyloxy)decanoyl]-sn-glycero-2-phosphocholine (bis-SorbPC), a synthetic, polymerizable lipid. The resulting polymerized bis-SorbPC (poly(bis-SorbPC)) stationary phases exhibited enhanced stability compared to particles coated with 1,2-dioleoyl-sn-glycero-phosphocholine (unpolymerized) phospholipid bilayers when exposed to chemical (50 mM triton X-100 or 50% acetonitrile) and physical (15 min sonication) insults after 30 days of storage. Further, poly(bis-SorbPC)-coated particles survived slurry packing into fused silica capillaries, compared to unpolymerized lipid membranes, where the lipid bilayer was destroyed during packing. Frontal chromatographic analyses of the lipophilic small molecules acetylsalicylic acid, benzoic acid, and salicylic acid showed >44% increase in retention times (P<0.0001) for all analytes on poly(bis-SorbPC)-functionalized stationary phase compared to bare silica microspheres, suggesting a lipophilic retention mechanism. Phospholipid membrane-functionalized stationary phases that withstand the chemical and physical rigors of capillary LC conditions can substantially increase the efficacy of lipid membrane affinity chromatography, and represents a key advance toward the development of robust membrane protein-functionalized chromatographic stationary phases.


Subject(s)
Capillary Electrochromatography/instrumentation , Lipid Bilayers/chemistry , Silicon Dioxide/chemistry , Phospholipids/chemistry , Polymers/chemistry
3.
Electrophoresis ; 35(8): 1099-105, 2014 Apr.
Article in English | MEDLINE | ID: mdl-24459085

ABSTRACT

Protein separations in CZE suffer from nonspecific adsorption of analytes to the capillary surface. Semipermanent phospholipid bilayers have been used to minimize adsorption, but must be regenerated regularly to ensure reproducibility. We investigated the formation, characterization, and use of hybrid phospholipid bilayers (HPBs) as more stable biosurfactant capillary coatings for CZE protein separations. HPBs are formed by covalently modifying a support with a hydrophobic monolayer onto which a self-assembled lipid monolayer is deposited. Monolayers prepared in capillaries using 3-cyanopropyldimethylchlorosilane (CPDCS) or n-octyldimethylchlorosilane (ODCS) yielded hydrophobic surfaces with lowered surface free energies of 6.0 ± 0.3 or 0.2 ± 0.1 mJ m(-2) , respectively, compared to 17 ± 1 mJ m(-2) for bare silica capillaries. HPBs were formed by subsequently fusing vesicles comprised of 1,2-dilauroyl-sn-glycero-3-phosphocholine or 1,2-dioleoyl-sn-glycero-3-phosphocholine to CPDCS- or ODCS-modified capillaries. The resultant HPB coatings shielded the capillary surface and yielded reduced electroosmotic mobility (1.3-1.9 × 10(-4) cm(2) V(-1) s(-1) ) compared to CPDCS- and ODCS-modified or bare capillaries (3.6 ± 0.2 × 10(-4) cm(2) V(-1) s(-1) , 4.8 ± 0.4 × 10(-4) cm(2) V(-1) s(-1) , and 6.0 ± 0.2 × 10(-4) cm(2) V(-1) s(-1) , respectively), with increased stability compared to phospholipid bilayer coatings. HPB-coated capillaries yielded reproducible protein migration times (RSD ≤ 3.6%, n ≥ 6) with separation efficiencies as high as 200 000 plates/m.


Subject(s)
Electrophoresis, Capillary/instrumentation , Phospholipids/chemistry , Animals , Cattle , Chickens , Chymotrypsinogen/isolation & purification , Horses , Muramidase/isolation & purification , Myoglobin/isolation & purification , Surface Properties
4.
Anal Chim Acta ; 772: 93-8, 2013 Apr 15.
Article in English | MEDLINE | ID: mdl-23540253

ABSTRACT

Phosphorylcholine (PC) based phospholipid bilayers have proven useful as capillary coating materials due to their inherent resistance to non-specific protein adsorption. The primary limitation of this important class of capillary coatings remains the limited long-term chemical and physical stability of the coatings. Recently, a method for increasing phospholipid coating stability in fused silica capillaries via utilization of polymerized, synthetic phospholipids was reported. Here, we expand upon these studies by investigating polymerized lipid bilayer capillary coatings with respect to separation performance including run-to-run, day-to-day and column-to-column reproducibility and long-term stability. In addition, the effects of pH and capillary inner diameter on polymerized phospholipid coated capillaries were investigated to identify optimized coating conditions. The coatings are stabilized for protein separations across a wide range of pH values (4.0-9.3), a unique property for capillary coating materials. Additionally, smaller inner diameter capillaries (≤50 µm) were found to yield marked enhancements in coating stability and reproducibility compared to wider bore capillaries, demonstrating the importance of capillary size for separations employing polymerized phospholipid coatings.


Subject(s)
Chemical Fractionation/methods , Electrophoresis, Capillary/methods , Lipid Bilayers/chemistry , Phosphatidylcholines/chemistry , Proteins/isolation & purification , Adsorption , Chemical Fractionation/instrumentation , Electrophoresis, Capillary/instrumentation , Hydrogen-Ion Concentration , Polymerization , Reproducibility of Results , Silicon Dioxide/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...