Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Proc Natl Acad Sci U S A ; 116(12): 5681-5686, 2019 03 19.
Article in English | MEDLINE | ID: mdl-30833408

ABSTRACT

Malaria, the disease caused by Plasmodium spp. infection, remains a major global cause of morbidity and mortality. Host protection from malaria relies on immune-driven resistance mechanisms that kill Plasmodium However, these mechanisms are not sufficient per se to avoid the development of severe forms of disease. This is accomplished instead via the establishment of disease tolerance to malaria, a defense strategy that does not target Plasmodium directly. Here we demonstrate that the establishment of disease tolerance to malaria relies on a tissue damage-control mechanism that operates specifically in renal proximal tubule epithelial cells (RPTEC). This protective response relies on the induction of heme oxygenase-1 (HMOX1; HO-1) and ferritin H chain (FTH) via a mechanism that involves the transcription-factor nuclear-factor E2-related factor-2 (NRF2). As it accumulates in plasma and urine during the blood stage of Plasmodium infection, labile heme is detoxified in RPTEC by HO-1 and FTH, preventing the development of acute kidney injury, a clinical hallmark of severe malaria.


Subject(s)
Heme/metabolism , Kidney/metabolism , Malaria/physiopathology , Animals , Apoferritins/metabolism , Cell Line , Disease Progression , Epithelial Cells/metabolism , Ferritins/metabolism , Ferritins/physiology , Heme Oxygenase-1/metabolism , Heme Oxygenase-1/physiology , Humans , Immune Tolerance/physiology , Mice , Mice, Inbred C57BL , NF-E2-Related Factor 2/metabolism , NF-E2-Related Factor 2/physiology , Oxidoreductases , Plasmodium berghei/metabolism , Plasmodium berghei/parasitology , Up-Regulation
SELECTION OF CITATIONS
SEARCH DETAIL
...