Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Rheumatology (Oxford) ; 49(11): 2024-36, 2010 Nov.
Article in English | MEDLINE | ID: mdl-20627968

ABSTRACT

OBJECTIVES: SSc is characterized by the overproduction of extracellular matrix (ECM) proteins, such as collagen and fibronectin, by activated fibroblasts, as well as oxidative stress. This study investigates the anti-fibrotic potential of the antioxidant epigallocatechin-3-gallate (EGCG) on activated dermal fibroblasts from SSc patients. METHODS: Dermal fibroblasts from a cell line (AG), healthy individuals (CON) and SSc patients were treated with EGCG, TGF-ß, PDGF-BB or other antioxidants [antioxidants superoxide dismutase (SOD), catalase, N-acetyl-L-cysteine (NAC) and diphenyleneiodonium (DPI)]. Collagen type I, fibronectin, connective tissue growth factor (CTGF), α-smooth muscle actin and mitogen-activated protein (MAP) kinases were measured by ELISA and western blot. Fibroblast contractile forces were measured by collagen gel contraction. Reactive oxygen species (ROS) were assessed by dichlorofluorescein assay and nuclear factor κ beta (NF-κB) activity by DNA binding assay. RESULTS: EGCG (1-100 µM) dose-dependently decreased collagen type I secretion in culture medium after 24 h in AG fibroblasts. Collagen type I protein expression in cell lysates was also significantly reduced by 40% in EGCG-treated cells (40 µM). Furthermore, EGCG also down-regulated TGF-ß-induced collagen type I, fibronectin and CTGF. Similarly, in CON fibroblasts EGCG decreased basal and stimulated collagen type I, fibronectin and CTGF after 24 h, while in SSc the effects of the antioxidant were apparent after 48 h. Fibroblast-mediated contraction of collagen gels was inhibited by EGCG as early as 1 h in AG fibroblasts, and in the CON and SSc fibroblasts. Additionally, EGCG also inhibited TGF-ß-stimulated gel contraction similar to other antioxidants DPI and NAC, but not SOD or catalase. EGCG suppressed TGF-ß-induced ROS production in all fibroblasts. Furthermore, EGCG inhibited TGF-ß or PDGF-BB-induced phospho-extracellular signal-regulated kinase (ERK)1/2 MAP kinase and NF-κB activity in SSc fibroblasts. CONCLUSION: The results suggest that the antioxidant, EGCG, can reduce ECM production, the fibrotic marker CTGF and inhibit contraction of dermal fibroblasts from SSc patients. Furthermore, EGCG was able to suppress intracellular ROS, ERK1/2 kinase signalling and NF-κB activity. Taken together, EGCG may be a possible candidate for therapeutic treatment aimed at reducing both oxidant stress and the fibrotic effects associated with SSc.


Subject(s)
Antioxidants/metabolism , Catechin/analogs & derivatives , Collagen Type I/metabolism , Fibroblasts/metabolism , Fibronectins/metabolism , Scleroderma, Systemic/metabolism , Analysis of Variance , Biopsy , Case-Control Studies , Catechin/metabolism , Cells, Cultured , Extracellular Matrix/metabolism , Female , Humans , Reactive Oxygen Species/metabolism
2.
J Invest Dermatol ; 130(9): 2191-200, 2010 Sep.
Article in English | MEDLINE | ID: mdl-20445556

ABSTRACT

Systemic sclerosis (SSc) is a disorder of systemic and dermal fibrosis of uncertain etiology. Recently, we found that SSc epidermis is abnormal, taking on an activated phenotype observed during wound healing and tissue repair. As epithelial-fibroblast interactions are important during wound repair and in fibrosis in general, we investigated further the phenotype of the SSc epidermis, and tested whether the SSc epidermis provides a pro-fibrotic stimulus to fibroblasts. In this study we show that in SSc epidermis keratinocyte maturation is delayed, and wound-associated keratins 6 and 16 are induced, in both involved and clinically uninvolved skin. Phosphorylation array analysis revealed induction of stress-induced mitogen-activated protein kinase signaling and mesenchymal feedback through hepatocyte growth factor/c-Met in SSc epidermis. SSc epidermal cells maintained with normal fibroblasts in three-dimensional co-culture were found to stimulate fibroblasts, leading to contractility and connective tissue growth factor expression. These effects depend on elevation of IL-1alpha by the epidermal cells and induction of endothelin-1 and transforming growth factor-beta in fibroblasts. Antagonism of endogenous IL-1alpha using IL-1 receptor antagonist blocked gel contraction by SSc epidermis. We propose that in SSc, epidermal cells are in a persistently activated state and are able to promote dermal fibrosis. These findings are important because biologic therapies could target epithelial-fibroblast interactions in the disease.


Subject(s)
Cell Communication/physiology , Epithelial Cells/pathology , Fibroblasts/pathology , Interleukin-1alpha/metabolism , Scleroderma, Systemic/metabolism , Scleroderma, Systemic/pathology , Biopsy , Cells, Cultured , Coculture Techniques , Connective Tissue Growth Factor/metabolism , Endothelin-1/metabolism , Epidermis/metabolism , Epidermis/pathology , Epithelial Cells/metabolism , Fibroblasts/metabolism , Fibrosis , Humans , Interleukin 1 Receptor Antagonist Protein/metabolism , Keratin-16/metabolism , Keratin-6/metabolism , Phosphorylation/physiology , Proto-Oncogene Proteins c-met/metabolism , Signal Transduction/physiology , Stress, Physiological/physiology , Transforming Growth Factor beta/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...