Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Elife ; 52016 12 09.
Article in English | MEDLINE | ID: mdl-27935476

ABSTRACT

Mediator-associated kinases CDK8/19 are context-dependent drivers or suppressors of tumorigenesis. Their inhibition is predicted to have pleiotropic effects, but it is unclear whether this will impact on the clinical utility of CDK8/19 inhibitors. We discovered two series of potent chemical probes with high selectivity for CDK8/19. Despite pharmacodynamic evidence for robust on-target activity, the compounds exhibited modest, though significant, efficacy against human tumor lines and patient-derived xenografts. Altered gene expression was consistent with CDK8/19 inhibition, including profiles associated with super-enhancers, immune and inflammatory responses and stem cell function. In a mouse model expressing oncogenic beta-catenin, treatment shifted cells within hyperplastic intestinal crypts from a stem cell to a transit amplifying phenotype. In two species, neither probe was tolerated at therapeutically-relevant exposures. The complex nature of the toxicity observed with two structurally-differentiated chemical series is consistent with on-target effects posing significant challenges to the clinical development of CDK8/19 inhibitors.


Subject(s)
Anti-Inflammatory Agents/administration & dosage , Antineoplastic Agents/administration & dosage , Cyclin-Dependent Kinase 8/antagonists & inhibitors , Cyclin-Dependent Kinases/antagonists & inhibitors , Mediator Complex/antagonists & inhibitors , Protein Kinase Inhibitors/administration & dosage , Animals , Anti-Inflammatory Agents/adverse effects , Anti-Inflammatory Agents/toxicity , Antineoplastic Agents/adverse effects , Antineoplastic Agents/toxicity , Disease Models, Animal , Heterografts , Humans , Hyperplasia/drug therapy , Mice , Neoplasms/drug therapy , Protein Kinase Inhibitors/adverse effects , Protein Kinase Inhibitors/toxicity , Treatment Outcome
2.
J Med Chem ; 59(3): 1078-101, 2016 Feb 11.
Article in English | MEDLINE | ID: mdl-26796641

ABSTRACT

The Mediator complex-associated cyclin-dependent kinase CDK8 has been implicated in human disease, particularly in colorectal cancer where it has been reported as a putative oncogene. Here we report the discovery of 109 (CCT251921), a potent, selective, and orally bioavailable inhibitor of CDK8 with equipotent affinity for CDK19. We describe a structure-based design approach leading to the discovery of a 3,4,5-trisubstituted-2-aminopyridine series and present the application of physicochemical property analyses to successfully reduce in vivo metabolic clearance, minimize transporter-mediated biliary elimination while maintaining acceptable aqueous solubility. Compound 109 affords the optimal compromise of in vitro biochemical, pharmacokinetic, and physicochemical properties and is suitable for progression to animal models of cancer.


Subject(s)
Aminopyridines/pharmacology , Cyclin-Dependent Kinase 8/antagonists & inhibitors , Cyclin-Dependent Kinases/antagonists & inhibitors , Drug Discovery , Small Molecule Libraries/pharmacology , Administration, Oral , Aminopyridines/administration & dosage , Aminopyridines/chemistry , Animals , Biological Availability , Caco-2 Cells , Cyclin-Dependent Kinase 8/metabolism , Cyclin-Dependent Kinases/metabolism , Dogs , Dose-Response Relationship, Drug , Female , Humans , Male , Mice , Models, Molecular , Molecular Structure , Neoplasms, Experimental/drug therapy , Neoplasms, Experimental/pathology , Rats , Rats, Wistar , Small Molecule Libraries/administration & dosage , Small Molecule Libraries/chemistry , Solubility , Structure-Activity Relationship , Xenograft Model Antitumor Assays
3.
Nat Chem Biol ; 11(12): 973-980, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26502155

ABSTRACT

There is unmet need for chemical tools to explore the role of the Mediator complex in human pathologies ranging from cancer to cardiovascular disease. Here we determine that CCT251545, a small-molecule inhibitor of the WNT pathway discovered through cell-based screening, is a potent and selective chemical probe for the human Mediator complex-associated protein kinases CDK8 and CDK19 with >100-fold selectivity over 291 other kinases. X-ray crystallography demonstrates a type 1 binding mode involving insertion of the CDK8 C terminus into the ligand binding site. In contrast to type II inhibitors of CDK8 and CDK19, CCT251545 displays potent cell-based activity. We show that CCT251545 and close analogs alter WNT pathway-regulated gene expression and other on-target effects of modulating CDK8 and CDK19, including expression of genes regulated by STAT1. Consistent with this, we find that phosphorylation of STAT1(SER727) is a biomarker of CDK8 kinase activity in vitro and in vivo. Finally, we demonstrate in vivo activity of CCT251545 in WNT-dependent tumors.


Subject(s)
Colonic Neoplasms/drug therapy , Colonic Neoplasms/metabolism , Cyclin-Dependent Kinase 8/antagonists & inhibitors , Cyclin-Dependent Kinase 8/metabolism , Cyclin-Dependent Kinases/antagonists & inhibitors , Cyclin-Dependent Kinases/metabolism , Molecular Probes/pharmacology , Protein Kinase Inhibitors/pharmacology , Pyridines/pharmacology , Spiro Compounds/pharmacology , Cell Line, Tumor , Cyclin-Dependent Kinase 8/genetics , Cyclin-Dependent Kinases/genetics , Humans , Models, Molecular , Molecular Probes/chemistry , Molecular Structure , Protein Kinase Inhibitors/chemistry , Pyridines/chemistry , Spiro Compounds/chemistry
4.
J Med Chem ; 58(4): 1717-35, 2015 Feb 26.
Article in English | MEDLINE | ID: mdl-25680029

ABSTRACT

WNT signaling is frequently deregulated in malignancy, particularly in colon cancer, and plays a key role in the generation and maintenance of cancer stem cells. We report the discovery and optimization of a 3,4,5-trisubstituted pyridine 9 using a high-throughput cell-based reporter assay of WNT pathway activity. We demonstrate a twisted conformation about the pyridine-piperidine bond of 9 by small-molecule X-ray crystallography. Medicinal chemistry optimization to maintain this twisted conformation, cognisant of physicochemical properties likely to maintain good cell permeability, led to 74 (CCT251545), a potent small-molecule inhibitor of WNT signaling with good oral pharmacokinetics. We demonstrate inhibition of WNT pathway activity in a solid human tumor xenograft model with evidence for tumor growth inhibition following oral dosing. This work provides a successful example of hypothesis-driven medicinal chemistry optimization from a singleton hit against a cell-based pathway assay without knowledge of the biochemical target.


Subject(s)
Antineoplastic Agents/pharmacology , Colorectal Neoplasms/drug therapy , Drug Evaluation, Preclinical/methods , Luciferases/antagonists & inhibitors , Pyridines/pharmacology , Small Molecule Libraries/pharmacology , Spiro Compounds/pharmacology , Wnt Signaling Pathway/drug effects , Administration, Oral , Animals , Antineoplastic Agents/administration & dosage , Antineoplastic Agents/chemistry , Biological Assay/methods , Biological Availability , Cell Line, Tumor , Cell Proliferation/drug effects , Colorectal Neoplasms/metabolism , Colorectal Neoplasms/pathology , Crystallography, X-Ray , Disease Models, Animal , Dose-Response Relationship, Drug , Humans , Luciferases/metabolism , Mice , Models, Molecular , Molecular Structure , Pyridines/administration & dosage , Pyridines/chemistry , Small Molecule Libraries/administration & dosage , Small Molecule Libraries/chemistry , Spiro Compounds/administration & dosage , Spiro Compounds/chemistry , Structure-Activity Relationship , Xenograft Model Antitumor Assays
SELECTION OF CITATIONS
SEARCH DETAIL
...