Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
J Cell Sci ; 113 ( Pt 16): 2897-907, 2000 Aug.
Article in English | MEDLINE | ID: mdl-10910774

ABSTRACT

A striking feature of early embryogenesis in a number of organisms is the use of embryonic linker histones or high mobility group proteins in place of somatic histone H1. The transition in chromatin composition towards somatic H1 appears to be correlated with a major increase in transcription at the activation of the zygotic genome. Previous studies have supported the idea that the mouse embryo essentially follows this pattern, with the significant difference that the substitute linker histone might be the differentiation variant H1 degrees, rather than an embryonic variant. We show that histone H1 degrees is not a major linker histone during early mouse development. Instead, somatic H1 was present throughout this period. Though present in mature oocytes, somatic H1 was not found on maternal metaphase II chromatin. Upon formation of pronuclear envelopes, somatic H1 was rapidly incorporated onto maternal and paternal chromatin, and the amount of somatic H1 steadily increased on embryonic chromatin through to the 8-cell stage. Microinjection of somatic H1 into oocytes, and nuclear transfer experiments, demonstrated that factors in the oocyte cytoplasm and the nuclear envelope, played central roles in regulating the loading of H1 onto chromatin. Exchange of H1 from transferred nuclei onto maternal chromatin required breakdown of the nuclear envelope and the extent of exchange was inversely correlated with the developmental advancement of the donor nucleus.


Subject(s)
Cross-Linking Reagents/pharmacology , Histones/pharmacology , Oocytes/cytology , Oocytes/metabolism , Animals , Antibodies, Monoclonal , Blastocyst/cytology , Blastocyst/metabolism , Cell Division/physiology , Cell Nucleus/metabolism , Chromatin/metabolism , Chromosomes/physiology , Cross-Linking Reagents/metabolism , Cytoplasm/metabolism , DNA/analysis , Female , Fluorescent Antibody Technique , Histones/immunology , Histones/metabolism , Hybrid Cells , Male , Mice , Mice, Inbred C57BL , Microinjections , Oocytes/drug effects
2.
Development ; 124(22): 4615-25, 1997 Nov.
Article in English | MEDLINE | ID: mdl-9409678

ABSTRACT

In the mouse embryo, transcriptional activation begins during S/G2 phase of the first cell cycle when paternal and maternal chromatin are still in separate nuclear entities within the same cytoplasm. At this time, the male pronucleus exhibits greater transcriptional activity than the female pronucleus. Since acetylation of histones in the nucleosome octamer exerts a regulatory influence on gene expression, we investigated changes in histone acetylation during the remodeling of paternal and maternal chromatin from sperm entry through to minor genome activation and mitosis. We found (1) neither mature sperm nor metaphase II maternal chromatin stained for hyperacetylated histone H4; (2) immediately following fertilization, hyperacetylated H4 was associated with paternal but not maternal chromatin while, in parthenogenetically activated oocytes, maternal chromatin became hyperacetylated; (3) in zygotes, differential levels and patterns of hyperacetylated H4 between male and female pronuclei persisted throughout most of G1 with histone deacetylases and acetyltransferases already active at this time; (4) when transcriptional differences are observed in S/G2, male and female pronuclei have equivalent levels of H4 hyperacetylation and DNA replication was not required to attain this equivalence and (5) in contrast to the lack of H4 hyperacetylation on gametic chromatin, chromosomes at the first mitosis showed distinct banding patterns of H4 hyperacetylation. These results suggest that sperm chromatin initially out-competes maternal chromatin for the pool of hyperacetylated H4 in the oocyte, that hyperacetylated H4 participates in the process of histone-protamine exchange in the zygote, and that differences in H4 acetylation in male and female pronuclei during G1 are translated across DNA replication to transcriptional differences in S/G2. Prior to fertilization, neither paternal nor maternal chromatin show memory of H4 hyperacetylation patterns but, by the end of the first cell cycle, before major zygotic genome activation at the 2-cell stage, chromosomes already show hyperacetylated H4 banding patterns.


Subject(s)
Chromatin/metabolism , Cleavage Stage, Ovum/metabolism , DNA Replication , Histones/metabolism , Acetylation , Animals , Cell Cycle , Cell Nucleus/metabolism , Female , Gene Expression Regulation, Developmental , Male , Mice , Mice, Inbred C57BL , Mice, Inbred CBA , Mitosis/genetics , Oocytes/metabolism , Pregnancy , Spermatozoa/metabolism , Transcription, Genetic , Zygote/metabolism
3.
Mol Reprod Dev ; 46(3): 325-36, 1997 Mar.
Article in English | MEDLINE | ID: mdl-9041135

ABSTRACT

The present study examined nuclear remodeling in rabbit nuclear transfer (NT) embryos formed from metaphase II (MII) oocytes aged in vivo until 19 hr postcoitum (hpc), enucleated, and fused at 22-26 hpc with 32-cell morula blastomeres by means of electric fields, which also induced recipient oocyte activation. Post-activation events observed during the first hour following the fusion/activation pulse were studied in terms of chromatin, lamins, and microtubules, and revealed that transferred nuclei underwent premature chromosomes condensation (PCC) in only one-third of NT embryos and remained in interphase in others. Recipient oocytes were mostly not activated by manipulations performed before the fusion/activation pulse. The persistence of transferred nuclei in interphase resulted from the rapid progression of recipient oocytes to interphase after activation, suggesting that the cytoplasmic state of MII oocytes aged in vivo was poised for the approach to interphase. Studying microtubular organization in MII oocytes before nuclear transfer manipulations, we found that 19 hpc MII oocytes aged in vivo differed from 14 hpc MII oocytes (freshly ovulated) and from 19-hpc MII oocytes aged in vitro (collected at 14 hpc and cultured for 5 hr), notably by the presence of microtubule asters and tubulin foci or only tubulin foci dispersed throughout the cytoplasm. When PCC was avoided, remodeling of the transferred nucleus was well advanced 1 hr after nuclear transfer, and NT embryos developed better to the blastocyst stage.


Subject(s)
Aging/physiology , Nuclear Transfer Techniques , Oocytes/cytology , Animals , Chromatin/ultrastructure , Female , Interphase , Metaphase , Microscopy, Electron , Microscopy, Fluorescence , Microtubules/ultrastructure , Rabbits , Spindle Apparatus/ultrastructure
4.
J Fluoresc ; 2(3): 181-90, 1992 Sep.
Article in English | MEDLINE | ID: mdl-24241629

ABSTRACT

Video-enhanced fluorescence imaging was used to quantify the DNA content in live two-cell mouse embryos. DNA was stained with the vital fluorophore Hoechst 33342. Conditions of dye concentration and irradiation were such that two-cell embryos could be kept in the constant presence of the dye for about 24 h without a major effect on their furtherin vitro viability. Total nuclear fluorescence intensity of stained two-cell embryos was measured twice under these conditions, i.e., in G1 (1 h after cleavage) and in G2 (15-18 h after cleavage), by image analysis. After correcting for the fluctuations in excitation intensity and for the spatial nonhomogeneities of the optical system (lenses and sensor), the mean total nuclear fluorescence intensity was about twofold higher in G2 than in G1 ([Symbol: see text]R[Symbol: see text]=1.99 to 2.25), and this increase was abolished by the addition of aphidicolin, an inhibitor of replication. The fluorescence increase did not depend on the Hoechst concentration in the range of 10-40 ng/ml, i.e., in the range of embryo viability. The coefficient of variation of the total nuclear fluorescence intensity measured under these conditions was rather large (10 to 20%). Nevertheless, the mean value of fluorescence intensity in G1 of nuclei of a given pool represents an appropriate reference to measure the increase in fluorescence intensity between G1 and G2.

5.
Mol Reprod Dev ; 28(1): 23-34, 1991 Jan.
Article in English | MEDLINE | ID: mdl-1994977

ABSTRACT

Using video-enhanced fluorescence microscopy, we describe in live mouse zygotes the paternal chromatin changes undergone after fertilization. We focus on the sperm recondensation process and the formation of the paternal pronucleus, in relationship with the progression of maternal chromatin. Chromatin is labeled with the vital fluorophore Hoechst 33342. Our conditions of dye concentration and irradiation allow a continuous following of the dynamics of changes without major perturbation. We combine these observations with ultrastructural analysis performed by electron microscopy of the same eggs fixed at chosen stages. We show that the highly recondensed state corresponds to the appearance of the nuclear envelope and therefore the beginning of the pronuclear stage.


Subject(s)
Chromatin/metabolism , Fertilization , Zygote/metabolism , Animals , Benzimidazoles , Chromatin/ultrastructure , Female , Fluorescent Dyes , Male , Mice , Microscopy, Electron , Microscopy, Fluorescence , Spermatozoa/metabolism , Zygote/ultrastructure
SELECTION OF CITATIONS
SEARCH DETAIL
...