Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Osteoarthr Cartil Open ; 5(3): 100381, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37416846

ABSTRACT

Objective: This study aimed to test a novel treatment combination (TC) (equivalent to sildenafil, mepivacaine, and glucose) with disease-modifying properties compared to Celestone® bifas® (CB) in a randomized triple-blinded phase III clinical study in horses with mild osteoarthritis (OA). Joint biomarkers (reflecting the articular cartilage and subchondral bone remodelling) and clinical lameness were used as readouts to evaluate the treatment efficacy. Methods: Twenty horses with OA-associated lameness in the carpal joint were included in the study and received either TC (n = 10) or CB (n = 10) drug intra-articularly-twice in the middle carpal joint with an interval of 2 weeks (visit 1 & 2). Clinical lameness was assessed both objectively (Lameness locator) and subjectively (visually). Synovial fluid and serum were sampled for quantification of the extracellular matrix (ECM) neo-epitope joint biomarkers represented by biglycan (BGN262) and cartilage oligomeric matrix protein (COMP156). Another two weeks later clinical lameness was recorded, and serum was collected for biomarkers analysis. The overall health status was compared pre and post-intervention by interviewing the trainer. Results: Post-intervention, SF BGN262 levels significantly declined in TC (P = 0.002) and COMP156 levels significantly increased in CB (P = 0.002). The flexion test scores improved in the TC compared to CB (P =0.033) and also had an improved trotting gait quality (P =0.044). No adverse events were reported. Conclusion: This is the first clinical study presenting companion diagnostics assisting in identifying OA phenotype and evaluating the efficacy and safety of a novel disease-modifying osteoarthritic drug.

2.
Osteoarthr Cartil Open ; 5(2): 100354, 2023 Jun.
Article in English | MEDLINE | ID: mdl-36968250

ABSTRACT

Objective: We aimed to delineate a novel soluble Biglycan Neo-epitope-BGN262 in saliva from young reference and osteoarthritic horses in conjunction with the influence of short-term training exercise, riding surface hardness, circadian rhythm, and feeding on its soluble levels. Design: A custom-made inhibition ELISA was used for the quantification of BGN262 in saliva. Cohort 1: A cross-sectional study comprising reference (N â€‹= â€‹19) and OA horses (N â€‹= â€‹9) with radiographically classified subchondral bone sclerosis. Receiver operating characteristic curve analysis was performed to evaluate the robustness of BGN262. Cohorts 2 (N â€‹= â€‹5) & 3 (N â€‹= â€‹7): Longitudinal studies of sampling during a short-term training exercise (sand-fibre) and a cross-over design of short-training exercise on 2 different riding arenas (sand and sand-fibre), respectively. Capillary western immunoassay was used to determine the BGN262 molecular size in a selection of saliva samples collected from cohort 1. Results: Cohort 1: Salivary BGN262 levels were significantly higher in the OA group. The Receiver operating characteristic curve analysis showed an area under the curve of 0.8304 [0.6386 to 1.022], indicating a good separation from the reference group. Cohorts 2 & 3: Salivary BGN262 levels significantly changed during the exercise on sand and sand-fibre arena, with a trend towards higher levels for sand-fibre. The size of the BGN262 fragment determined by Capillary western assay was 18 â€‹kDa. Conclusions: The data presented show saliva BGN262 levels as a novel biomarker in evaluating the influence of exercise, and interaction with riding arenas alongside assessing osteoarthritis severity.

3.
Osteoarthritis Cartilage ; 30(10): 1328-1336, 2022 10.
Article in English | MEDLINE | ID: mdl-35870736

ABSTRACT

OBJECTIVE: Native biglycan (BGN), which can undergo proteolytic cleavage in pathological conditions, is well known to be involved in bone formation and mineralization. This study aimed to delineate the specific cleavage fragment, a neo-epitope for BGN (BGN262), in synovial fluid (SF) from young racehorses in training, osteoarthritic (OA) joints with subchondral bone sclerosis (SCBS), and chip fracture joints. DESIGN: A custom-made inhibition ELISA was developed to quantify BGN262 in SF. Cohort 1: A longitudinal study comprising 10 racehorses undergoing long-term training. Cohort 2: A cross-sectional study comprising joints from horses (N = 69) with different stages of OA and radiographically classified SCBS. Cohort 3: A cross-sectional study comprising horses (N = 9) with chip fractures. Receiver operating characteristic (ROC) curve analysis was performed (healthy joints vs chip joints) to evaluate BGN262 robustness. RESULTS: Cohort 1: SF BGN262 levels from racehorses showed a statistical increase during the first 6 months of the training period. Cohort 2: BGN262 levels were significantly higher in the SF from severe SCBS joints. Cohort 3: SF BGN262 levels in chip fracture joints showed a significant increase compared to normal joints. The ROC analysis showed an AUC of 0.957 (95% C.I 0.868-1.046), indicating good separation between the groups. CONCLUSIONS: The data presented show that BGN262 levels increase in SF in correlation with the initiation of training, severity of SCBS, and presence of chip fractures. This suggests that BGN262 is a potential predictor and a novel biomarker for early changes in subchondral bone (SCB), aiming to prevent catastrophic injuries in racehorses.


Subject(s)
Horse Diseases , Animals , Biglycan , Biomarkers , Cross-Sectional Studies , Epitopes , Horses , Humans , Longitudinal Studies
4.
Am J Transplant ; 14(10): 2328-38, 2014 Oct.
Article in English | MEDLINE | ID: mdl-25154787

ABSTRACT

Syndecan-1 is a transmembrane heparan sulfate (HS) proteoglycan present on hepatocytes and involved in uptake of triglyceride-rich lipoproteins via its HS polysaccharide side chains. We hypothesized that altered hepatic syndecan-1 metabolism could be involved in dyslipidemia related to renal transplantation. In a rat renal transplantation model elevated plasma triglycerides were associated with fivefold increased expression of hepatic syndecan-1 mRNA (p < 0.01), but not protein. Expression of syndecan-1 sheddases (ADAM17, MMP9) and heparanase was significantly up-regulated after renal transplantation (all p < 0.05). Profiling of HS side chains revealed loss of hepatic HS upon renal transplantation accompanied by significant decreased functional capacity for VLDL binding (p = 0.02). In a human renal transplantation cohort (n = 510), plasma levels of shed syndecan-1 were measured. Multivariate analysis showed plasma syndecan-1 to be independently associated with triglycerides (p < 0.0001) and inversely with HDL cholesterol (p < 0.0001). Last, we show a physical association of syndecan-1 to HDL from renal transplant recipients (RTRs), but not to HDL from healthy controls. Our data suggest that after renal transplantation loss of hepatic HS together with increased syndecan-1 shedding hampers lipoprotein binding and uptake by the liver contributing to dyslipidemia. Our data open perspectives toward improvement of lipid profiles by targeted inhibition of syndecan-1 catabolism in renal transplantation.


Subject(s)
Dyslipidemias/metabolism , Kidney Transplantation , Liver/metabolism , Syndecan-1/metabolism , Animals , Female , Male , Rats , Rats, Wistar
SELECTION OF CITATIONS
SEARCH DETAIL
...