Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Ambient Intell Humaniz Comput ; 14(7): 9677-9750, 2023.
Article in English | MEDLINE | ID: mdl-35821879

ABSTRACT

The success of deep learning over the traditional machine learning techniques in handling artificial intelligence application tasks such as image processing, computer vision, object detection, speech recognition, medical imaging and so on, has made deep learning the buzz word that dominates Artificial Intelligence applications. From the last decade, the applications of deep learning in physiological signals such as electrocardiogram (ECG) have attracted a good number of research. However, previous surveys have not been able to provide a systematic comprehensive review including biometric ECG based systems of the applications of deep learning in ECG with respect to domain of applications. To address this gap, we conducted a systematic literature review on the applications of deep learning in ECG including biometric ECG based systems. The study analyzed systematically, 150 primary studies with evidence of the application of deep learning in ECG. The study shows that the applications of deep learning in ECG have been applied in different domains. We presented a new taxonomy of the domains of application of the deep learning in ECG. The paper also presented discussions on biometric ECG based systems and meta-data analysis of the studies based on the domain, area, task, deep learning models, dataset sources and preprocessing methods. Challenges and potential research opportunities were highlighted to enable novel research. We believe that this study will be useful to both new researchers and expert researchers who are seeking to add knowledge to the already existing body of knowledge in ECG signal processing using deep learning algorithm. Supplementary information: The online version contains supplementary material available at 10.1007/s12652-022-03868-z.

2.
Heliyon ; 7(7): e07437, 2021 Jul.
Article in English | MEDLINE | ID: mdl-34278030

ABSTRACT

The phishing attack is one of the most complex threats that have put internet users and legitimate web resource owners at risk. The recent rise in the number of phishing attacks has instilled distrust in legitimate internet users, making them feel less safe even in the presence of powerful antivirus apps. Reports of a rise in financial damages as a result of phishing website attacks have caused grave concern. Several methods, including blacklists and machine learning-based models, have been proposed to combat phishing website attacks. The blacklist anti-phishing method has been faulted for failure to detect new phishing URLs due to its reliance on compiled blacklisted phishing URLs. Many ML methods for detecting phishing websites have been reported with relatively low detection accuracy and high false alarm. Hence, this research proposed a Functional Tree (FT) based meta-learning models for detecting phishing websites. That is, this study investigated improving the phishing website detection using empirical analysis of FT and its variants. The proposed models outperformed baseline classifiers, meta-learners and hybrid models that are used for phishing websites detection in existing studies. Besides, the proposed FT based meta-learners are effective for detecting legitimate and phishing websites with accuracy as high as 98.51% and a false positive rate as low as 0.015. Hence, the deployment and adoption of FT and its meta-learner variants for phishing website detection and applicable cybersecurity attacks are recommended.

SELECTION OF CITATIONS
SEARCH DETAIL
...