Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Heliyon ; 10(11): e31880, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38845962

ABSTRACT

The impact of emerging pollutants such as ibuprofen and dibutyl phthalate on aquatic species is a growing concern and the need for proper assessment and evaluation of these toxicants is imperative. The objective of this study was to examine the toxicogenomic impacts of ibuprofen and dibutyl phthalate on Clarias gariepinus, a widely distributed African catfish species. Results showed that exposure to the test compounds caused significant changes in gene expression, including upregulation of growth hormone, interleukin, melatonin receptors, 17ß-Hydroxysteroid Dehydrogenase, heat shock protein, doublesex, and mab-3 related transcription factor. On the other hand, expression of forkhead Box Protein L2 and cytochrome P450 was downregulated, revealing a potential to induce female to male sex reversal. The binding affinities and hydrophobic interactions of the test compounds with the reference genes were also studied, showing that ibuprofen had the lowest binding energy and the highest affinity for the docked genes. Both compounds revealed a mutual molecular interaction with amino acids residues within the catalytic cavity of the docked genes. These results provide new insights into the toxic effects of ibuprofen and dibutyl phthalate on Clarias gariepinus, contributing to a better understanding of the environmental impact of these pollutants.

2.
Food Chem Toxicol ; 165: 113189, 2022 Jul.
Article in English | MEDLINE | ID: mdl-35636641

ABSTRACT

The toxicity of D. tripetala fruit extract to mice was investigated using data obtained from lipidomic analyses, comet and Acetylcholinesterase (AChE) assays. Mice (n = 8) were exposed for 30 days via oral gavage to vehicle (5% Tween 80) (negative control), D. tripetala extract (100, 200 and 400 mg/kg) and 40 mg/kg methyl methanesulfonate (MMS) (positive control). The profile of compounds in the fruit extract was analyzed using gas chromatography-mass spectrometry. Out of the total of 32 compounds identified, considerable amount of established insecticidal compounds such as 2-phenylnitroethane, cis-vaccenic acid, linalool and linoleic acid were detected. Fruit extract did not induce DNA damage relative to negative control. Percentage gain in body weights differed significantly across the four weeks. Significantly highest and lowest brain AChE activity was observed in animals exposed to 200 and 400 mg/kg D. tripetala, respectively. Fruit extract modulated the brain phospholipid profile due to significant fold changes of 48 lipid species out of the total of 280 lipid species. High number of differentially expressed phosphatidylcholine (PC) species and significant levels of phosphatidylethanolamine (PE) at 400 mg/kg suggests that activation of inflammation and methylation pathways are the most plausible mechanisms of D. tripetala toxicity to mouse brain tissue.


Subject(s)
Fruit , Piper nigrum , Acetylcholinesterase , Animals , Cholinesterase Inhibitors/analysis , Cholinesterase Inhibitors/toxicity , DNA Damage , Fruit/chemistry , Mice , Phospholipids/analysis , Plant Extracts/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...