Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Inorg Chem ; 37(25): 6476-6484, 1998 Dec 14.
Article in English | MEDLINE | ID: mdl-11670768

ABSTRACT

The complex [(tpy)(C(2)O(4))Ru(III)ORu(III)(C(2)O(4))(tpy)].8H(2)O (1.8H(2)O) (tpy is 2,2':6',2"-terpyridine) has been prepared and characterized by X-ray crystallography and FTIR, resonance Raman, and (1)H NMR spectroscopies. From the results of the X-ray analysis, angleRuORu is 148.5 degrees with a torsional angle (O(22)-Ru(2)-O(1)-Ru(1)-O(12)) of 22.7 degrees and there is a short Ru-O bridge distance of 1.843 Å. 1 undergoes a chemically reversible one-electron, pH-independent oxidation at 0.73 V vs NHE (0.49 V vs SCE) from pH = 4-8 and a pH-dependent, two-electron, chemically irreversible reduction at -0.35 V below pH = 4.0. Addition of 1.8H(2)O to strong acid generates [(tpy)(H(2)O)(2)Ru(III)ORu(III)(H(2)O)(2)(tpy)](4+) (2), which has been characterized by UV-visible, resonance Raman, and (1)H NMR measurements. In pH-dependent cyclic voltammograms there is evidence for a series of redox couples interrelating oxidation states from Ru(II)ORu(II) to Ru(V)ORu(V). In contrast to the "blue dimer", cis,cis-[(bpy)(2)(H(2)O)Ru(III)ORu(III)(OH(2))(bpy)(2)](4+), oxidation state Ru(IV)ORu(IV) (Ru(V)ORu(III)?) does appear as a stable oxidation state. Oxidation of Ru(IV)ORu(IV) by Ce(IV) in 0.1 M HClO(4) is followed by rapid O(2) production and appearance of an anated form of Ru(IV)ORu(IV). O(2) formation is in competition with oxidative cleavage of Ru(V)ORu(V) by Ce(IV) to give [Ru(VI)(tpy)(O)(2)(OH(2))](2+). Anation and oxidative cleavage prevent this complex from being a true catalyst for water oxidation.

2.
Inorg Chem ; 35(14): 4120-4127, 1996 Jul 03.
Article in English | MEDLINE | ID: mdl-11666620

ABSTRACT

The complexes [Ru(tpy)(acac)(Cl)], [Ru(tpy)(acac)(H(2)O)](PF(6)) (tpy = 2,2',2"-terpyridine, acacH = 2,4 pentanedione) [Ru(tpy)(C(2)O(4))(H(2)O)] (C(2)O(4)(2)(-) = oxalato dianion), [Ru(tpy)(dppene)(Cl)](PF(6)) (dppene = cis-1,2-bis(diphenylphosphino)ethylene), [Ru(tpy)(dppene)(H(2)O)](PF(6))(2), [Ru(tpy)(C(2)O(4))(py)], [Ru(tpy)(acac)(py)](ClO(4)), [Ru(tpy)(acac)(NO(2))], [Ru(tpy)(acac)(NO)](PF(6))(2), and [Ru(tpy)(PSCS)Cl] (PSCS = 1-pyrrolidinedithiocarbamate anion) have been prepared and characterized by cyclic voltammetry and UV-visible and FTIR spectroscopy. [Ru(tpy)(acac)(NO(2))](+) is stable with respect to oxidation of coordinated NO(2)(-) on the cyclic voltammetric time scale. The nitrosyl [Ru(tpy)(acac)(NO)](2+) falls on an earlier correlation between nu(NO) (1914 cm(-)(1) in KBr) and E(1/2) for the first nitrosyl-based reduction 0.02 V vs SSCE. Oxalate ligand is lost from [Ru(II)(tpy)(C(2)O(4))(H(2)O)] to give [Ru(tpy)(H(2)O)(3)](2+). The Ru(III/II) and Ru(IV/III) couples of the aqua complexes are pH dependent. At pH 7.0, E(1/2) values are 0.43 V vs NHE for [Ru(III)(tpy)(acac)(OH)](+)/[Ru(II)(tpy)(acac)(H(2)O)](+), 0.80 V for [Ru(IV)(tpy)(acac)(O)](+)/[Ru(III)(tpy)(acac)(OH)](+), 0.16 V for [Ru(III)(tpy)(C(2)O(4))(OH)]/[Ru(II)(tpy)(C(2)O(4))(H(2)O)], and 0.45 V for [Ru(IV)(tpy)(C(2)O(4))(O)]/[Ru(III)(tpy)(C(2)O(4))(OH)]. Plots of E(1/2) vs pH define regions of stability for the various oxidation states and the pK(a) values of aqua and hydroxo forms. These measurements reveal that C(2)O(4)(2)(-) and acac(-) are electron donating to Ru(III) relative to bpy. Comparisons with redox potentials for 21 related polypyridyl couples reveal the influence of ligand changes on the potentials of the Ru(IV/III) and Ru(III/II) couples and the difference between them, DeltaE(1/2). The majority of the effect appears in the Ru(III/II) couple. ()A linear correlation exists between DeltaE(1/2) and the sum of a set of ligand parameters defined by Lever et al., SigmaE(i)(L(i)), for the series of complexes, but there is a dramatic change in slope at DeltaE(1/2) approximately -0.11 V and SigmaE(i)(L(i)) = 1.06 V. Extrapolation of the plot of DeltaE(1/2) vs SigmaE(i)(L(i)) suggests that there may be ligand environments in which Ru(III) is unstable with respect to disproportionation into Ru(IV) and Ru(II). This would make the two-electron Ru(IV)O/Ru(II)OH(2) couple more strongly oxidizing than the one-electron Ru(IV)O/Ru(III)OH couple.

SELECTION OF CITATIONS
SEARCH DETAIL
...