Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
J Ethnopharmacol ; 283: 114686, 2022 Jan 30.
Article in English | MEDLINE | ID: mdl-34571079

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: The choice of extraction solvent is a significant consideration in ethnomedicine as optimal extraction could influence the bioactivity of the herbal medicinal product. AIM OF STUDY: This study investigated the possible influence of the choice of solvents (methanol and water) for extracting MAMA Powder (MP) against Plasmodium berghei-infected mice to optimize its antimalarial activity and for developing other pharmaceutical dosage forms. MATERIALS AND METHODS: Aqueous and methanol extracts of MP, obtained through the decoction and soxhlet methods, respectively, were subjected to liquid chromatography-mass spectroscopy (LC-MS) for their respective fingerprints. The antimalarial activities of the methanol and aqueous extracts (12.5-100 mg/kg) were evaluated orally using the chemosuppressive test model on chloroquine-sensitive Plasmodium berghei-infected mice. The methanol extract was subjected to the established infection and prophylactic antimalarial tests with chloroquine (10 mg/kg) and pyrimethamine (1.25 mg/kg) as positive controls, respectively. The aqueous extract was investigated in chloroquine-resistant P. berghei using the chemosuppressive (12.5-800 mg/kg) and established infection (25-400 mg/kg) antimalarial models. RESULTS: The LC-MS fingerprints of both aqueous and methanol extracts revealed similar indole alkaloid contents. Chemosuppressive activity of the aqueous extract (75.3%) was significantly (p < 0.05) higher than the methanol extract (67.6%). In the chloroquine-resistant P. berghei infection experiments, the aqueous extract (400 mg/kg) exhibited significant parasite clearance (72%). CONCLUSION: The study concluded that the water extract with higher antimalarial activity could be optimized for chloroquine-resistant malaria and can thus facilitate the production of liquid and solid dosage forms.


Subject(s)
Antimalarials/therapeutic use , Malaria/drug therapy , Phytotherapy , Plant Extracts/therapeutic use , Plasmodium berghei/drug effects , Animals , Antimalarials/chemistry , Chloroquine/pharmacology , Drug Resistance , Mice , Plant Extracts/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...