Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Dalton Trans ; 50(38): 13345-13356, 2021 Oct 05.
Article in English | MEDLINE | ID: mdl-34608914

ABSTRACT

In an attempt to explore the significance of inorganic mimetic enzymes as sensors, this study introduces a naked-eye analytical sensing platform for the detection of L-cysteine (cys), mercury ions (Hg2+) based on (turn off/turn-on) catalytic activity of zinc and cobalt grafted mesoporous silica nanoparticles (MSNs). To this end, Zn-MSN and Co/Zn-MSN catalysts were synthesized and characterized using XRD, FT-IR, FESEM, TEM, and nitrogen adsorption-desorption methods. Then, using the intrinsic peroxidase-like activity of as-synthesized samples, the oxidation reactions of the chromogenic substrate (2,2'-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) diammonium salt (ABTS)) was designed using H2O2, which produced green colored cation radical of ABTS. Considering the high peroxidase-like activity of Co/Zn-MSN in comparison to Zn-MSN, it was employed to detect cys and then Hg2+. The results indicated that the strong interaction between cys and Co/Zn-MSN was proved by a limit of detection (LOD) down to 0.24 nM and the linear relationship from 0.8-50 nM (turn off). Given the fact that Hg2+ has a high-affinity tendency to combine with cys, we were suggested a novel colorimetric path for sensing of Hg2+ in the presence of cys (turn on). Based on this method, LOD was found 0.17 nM with the linear range of 0.57-50 nM. Taken together, results showed that the as-prepared catalysts are superior to other nanoparticles as a sensor to measure the target molecules in biological monitoring and clinical diagnostics.

2.
J Mater Chem B ; 9(17): 3716-3726, 2021 05 05.
Article in English | MEDLINE | ID: mdl-33900347

ABSTRACT

Over the past decade, there has been a dramatic increase in the number of studies focused on sensors for cysteine (Cys) as a crucial factor in physiological function and disease diagnosis. Among those sensors, nanomaterial-based peroxidase mimetics have received particular attention from researchers. This study introduces a new series of mesoporous silica nanoparticles (MSNs) incorporated with iron and cobalt (Co/Fe-MSN) with a molar ratio of Si/Fe = 10 and cobalt species at 1, 3, and 5 wt% that have great potential in the sensing application. These nanomaterial characterization was investigated by FTIR spectroscopy, SEM, TEM, XRD, and nitrogen adsorption-desorption. The peroxidase activity of these nanomaterials was studied through kinetic analysis. The findings revealed that Co/Fe-MSN (1%) showed higher peroxidatic activity than the others towards the common chromogenic substrate 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) diammonium salt. Based on the enzymatic activity of Co/Fe-MSN (1%), a colorimetric sensing platform was designed to detect H2O2 and Cys. The limit of detection (LOD) for H2O2 and Cys was determined to be 1.1 µM and 0.89 nM, respectively. The results indicated that the proposed enzyme mimic exhibited excellent potential as a sensor in medical diagnostics and biological systems.


Subject(s)
Cobalt/chemistry , Coloring Agents/chemistry , Cysteine/analysis , Iron/chemistry , Nanoparticles/chemistry , Silicon Dioxide/chemistry , Adsorption , Benzothiazoles/chemistry , Biomimetic Materials/chemistry , Biosensing Techniques , Colorimetry , Hydrogen Peroxide/chemistry , Kinetics , Limit of Detection , Nitrogen/chemistry , Peroxidase/chemistry , Porosity , Sulfonic Acids/chemistry , Surface Properties
3.
Dalton Trans ; 43(21): 7945-57, 2014 Jun 07.
Article in English | MEDLINE | ID: mdl-24715093

ABSTRACT

Three N-(pyridine-2-ylcarbamothioyl)benzamide derivatives were synthesized by the reaction of potassium thiocyanate, benzoyl chloride, and 2-amino pyridine derivatives in one pot. The obtained derivatives were oxidized using copper(ii) chloride. During the oxidation, two hydrogen atoms were removed, cyclization of the derivatives occurred, and finally, three new N-(2H-[1,2,4]thiadiazolo[2,3-a]pyridine-2-ylidene)benzamide derivatives were produced. Coordination of these three new derivative ligands to the copper(II) ion resulted in the formation of three new complexes: dichlorobis(N-(2H-[1,2,4]thiadiazolo[2,3-a]pyridine-2-ylidene)benzamide)copper(II), dichlorobis(N-(7-methyl-2H-[1,2,4]thiadiazolo[2,3-a]pyridine-2ylidene)benzamide)copper(II), and dichlorobis(N-(5-methyl-2H-[1,2,4]thiadiazolo[2,3-a]pyridine-2-ylidene)benzamide)copper(II). All the synthesized products were characterized by IR, (1)H NMR, and (13)C NMR spectroscopies. Crystal structures of the obtained N-(pyridine-2-ylcarbamothioyl)benzamide derivatives, N-(2H-[1,2,4]thiadiazolo[2,3-a]pyridine-2-ylidene)benzamide derivatives, and complexes were determined using X-ray single-crystal diffraction; the positions of atoms, bond lengths, bond angles, and dihedral angles were also determined. In all complexes, the coordination of two large monodentate ligands and two chloride anions to the copper(ii) ion resulted in the formation of a stable planar geometry around the central ion. Three N-(pyridine-2-ylcarbamothioyl)benzamide derivatives, three N-(2H-[1,2,4]thiadiazolo[2,3-a]pyridine-2-ylidene)benzamide derivatives, and three complexes were evaluated for their cytotoxicity against five human cancer cell lines (breast cancer cell line MDA-MB-231, neuroblastoma cell line SK-N-MC, prostate adenocarcinoma cell line LNCap, nasopharyngeal epidermoid carcinoma cell line KB, and liver cancer cell line HEPG-2) using an in vitro analysis. The N-(pyridine-2-ylcarbamothioyl)benzamide derivatives showed no cytotoxic activity, whereas the N-(2H-[1,2,4]thiadiazolo[2,3-a]pyridine-2-ylidene)benzamide derivatives and their complexes showed significant cytotoxicity, especially against MDA-MB-231 and LNCap cell lines. The complexes demonstrated smaller IC50 values than N-(2H-[1,2,4]thiadiazolo[2,3-a]pyridine-2-ylidene)benzamide derivatives.


Subject(s)
Antineoplastic Agents/chemistry , Benzamides/chemistry , Coordination Complexes/chemistry , Copper/chemistry , Pyridines/chemistry , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/pharmacology , Benzamides/chemical synthesis , Benzamides/pharmacology , Cell Line, Tumor , Cell Survival/drug effects , Coordination Complexes/chemical synthesis , Coordination Complexes/pharmacology , Copper/pharmacology , Crystallography, X-Ray , Humans , Ligands , Models, Molecular , Neoplasms/drug therapy , Pyridines/chemical synthesis , Pyridines/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...