Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Nanosci Au ; 3(6): 491-499, 2023 Dec 20.
Article in English | MEDLINE | ID: mdl-38144702

ABSTRACT

Iron phosphide (FeP) nanoparticles have excellent properties such as fast charge transfer kinetics, high electrical conductivity, and high stability, making them a promising catalyst for hydrogen evolution reaction (HER). A challenge to the wide use of iron phosphide nanomaterials for this application is the available synthesis protocols that limit control over the resulting crystalline phase of the product. In this study, we report a method for synthesizing FeP through a solution-based process. Here, we use iron oxyhydroxide (ß-FeOOH) as a cost-effective, environmentally friendly, and air-stable source of iron, along with tri-n-octylphosphine (TOP) as the phosphorus source and solvent. FeP is formed in a nanobundle morphology in the solution phase reaction at a temperature of 320 °C. The materials were characterized by pXRD and transmission electron microscopy (TEM). The optimization parameters evaluated to produce the phosphorus-rich FeP phase included the reaction rate, time, amount of TOP, and reaction temperature. Mixtures of Fe2P and FeP phases were obtained at shorter reaction times and slow heating rates (4.5 °C /min), while longer reaction times and faster heating rates (18.8 °C/min) favored the formation of phosphorus-rich FeP. Overall, the reaction lever that consistently yielded FeP as the predominant crystalline phase was a fast heat rate.

3.
ACS Omega ; 7(36): 32717-32726, 2022 Sep 13.
Article in English | MEDLINE | ID: mdl-36120032

ABSTRACT

Handmade papers (HPs) are fabricated from fibrous biomass of Lokta bushes and other plant species following traditional eco-friendly method in Nepal. Although HP fabricated from Lokta bushes is believed to be durable and resistant to bugs and molds, material properties of this paper are not reported in literature. In this study, we measured several material properties of 10 handmade Lokta paper samples collected from local enterprises and paper industries. The mean caliper, grammage, apparent density, equilibrium moisture content, Cobb 60, brightness, opacity, tensile strength, and tensile index values in the paper samples ranged from ∼90 to 700 µm, 50 to 150 g/m2, 0.2 to 0.4 g/cm3, 4 to 7%, 50 to 400 g/m2, 56 to 67%, 83 to 98%, 30 to 2900 N/m, and 1 to 27 Nm/g, respectively. These properties suggested that the HPs are lightweight papers with intermediate to high strength. The tensile strength was found to be significantly higher along the length direction (p < 0.05). Characteristic features of cellulose, hemicellulose, and lignin were observed in FTIR spectra. The crystalline and amorphous phases were also identified in X-ray diffraction (XRD) data. Electron microscopy images revealed a nicely cross-linked network of intact fibers having almost parallel arrangement of microfibrils. These features could provide strength and durability to the paper samples. Understanding the material properties of HPs down to the sub-microscopic level may help improve the paper quality and find novel applications in the future.

4.
ACS Omega ; 5(35): 22440-22448, 2020 Sep 08.
Article in English | MEDLINE | ID: mdl-32923802

ABSTRACT

Nanowires and nanorods of magnetite (Fe3O4) are of interest due to their varied biological applications but most importantly for their use as magnetic resonance imaging contrast agents. One-dimensional (1D) structures of magnetite, however, are more challenging to synthesize because the surface energy favors the formation of isotropic structures. Synthetic protocols can be dichotomous, producing either the 1D structure or the magnetite phase but not both. Here, superparamagnetic Fe3O4 nanorods were prepared in solution by the reduction of iron oxy-hydroxide (ß-FeOOH) nanoneedles with hydrazine (N2H4). The amount of hydrazine and the reaction time affected the phase and morphology of the resulting iron oxide nanoparticles. One-dimensional nanostructures of Fe3O4 could be produced consistently from various aspect ratios of ß-FeOOH nanoneedles, although the length of the template was not retained. Fe3O4 nanorods were characterized by transmission electron microscopy, X-ray powder diffraction, X-ray photoelectron spectroscopy, and SQUID magnetometry.

5.
ACS Omega ; 5(23): 14104-14110, 2020 Jun 16.
Article in English | MEDLINE | ID: mdl-32566877

ABSTRACT

We report a solution-based synthetic method to produce shape-tunable iron pyrite (FeS2) nanocrystals using iron oxy-hydroxide (ß-FeOOH) as a precursor and their application for selective reduction of functionalized nitroarenes to aniline derivatives with formic acid-triethylamine (HCOOH-Et3N) as a hydrogen donor system.

SELECTION OF CITATIONS
SEARCH DETAIL
...