Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Omega ; 8(8): 7791-7799, 2023 Feb 28.
Article in English | MEDLINE | ID: mdl-36873008

ABSTRACT

Biological materials such as amino acids are attractive due to their smaller environmental footprint, ease of functionalization, and potential for creating biocompatible surfaces for devices. Here, we report the facile assembly and characterization of highly conductive films of composites of phenylalanine, one of the essential amino acids, and PEDOT:PSS, a commonly used conducting polymer. We have observed that introducing aromatic amino acid phenylalanine into PEDOT:PSS to form composite films can improve the conductivity of the films by up to a factor of 230 compared to the conductivity of pristine PEDOT:PSS film. In addition, the conductivity of the composite films can be tuned by varying the amount of phenylalanine in PEDOT:PSS. Using DC and AC measurement techniques, we have determined that the conduction in the highly conductive composite films thus created is due to improvement in the electron transport efficiency compared to the charge transport in pure PEDOT:PSS films. Using SEM and AFM, we demonstrate that this could be due to the phase separation of PSS chains from PEDOT:PSS globules which can create efficient charge transport pathways. Fabricating composites of bioderived amino acids with conducting polymers using facile techniques such as the one we report here opens up opportunities for the development of low-cost biocompatible and biodegradable electronic materials with desired electronic properties.

2.
RSC Adv ; 9(47): 27289-27293, 2019 Aug 29.
Article in English | MEDLINE | ID: mdl-35529222

ABSTRACT

Electronic waste (e-waste) is a growing problem in the world due to increasing consumption and subsequent discarding of electronic devices. One of the ways to address this problem is to develop electronics made up of biodegradable components. Leaves are readily available, biodegradable and can be found with various types of architecture of the vascular conduits within. We investigated the possibility of developing electronic components based on leaves of a monocotyledon plant by introducing a conducting polymer inside the vascular conduits. We were able to construct conducting wires in those conduits extending to centimeters in length within a leaf. Furthermore, we were able to demonstrate the construction of a supercapacitor within a leaf by using the conducting conduits as electrodes. These results suggest the possibility of constructing embedded electronic components within leaves which may provide an alternative towards the development of biodegradable electronics.

3.
ISME J ; 12(1): 48-58, 2018 01.
Article in English | MEDLINE | ID: mdl-28872631

ABSTRACT

The possibility that bacteria other than Geobacter species might contain genes for electrically conductive pili (e-pili) was investigated by heterologously expressing pilin genes of interest in Geobacter sulfurreducens. Strains of G. sulfurreducens producing high current densities, which are only possible with e-pili, were obtained with pilin genes from Flexistipes sinusarabici, Calditerrivibrio nitroreducens and Desulfurivibrio alkaliphilus. The conductance of pili from these strains was comparable to native G. sulfurreducens e-pili. The e-pili derived from C. nitroreducens, and D. alkaliphilus pilin genes are the first examples of relatively long (>100 amino acids) pilin monomers assembling into e-pili. The pilin gene from Candidatus Desulfofervidus auxilii did not yield e-pili, suggesting that the hypothesis that this sulfate reducer wires itself with e-pili to methane-oxidizing archaea to enable anaerobic methane oxidation should be reevaluated. A high density of aromatic amino acids and a lack of substantial aromatic-free gaps along the length of long pilins may be important characteristics leading to e-pili. This study demonstrates a simple method to screen pilin genes from difficult-to-culture microorganisms for their potential to yield e-pili; reveals new sources for biologically based electronic materials; and suggests that a wide phylogenetic diversity of microorganisms may use e-pili for extracellular electron exchange.


Subject(s)
Deltaproteobacteria/chemistry , Deltaproteobacteria/genetics , Fimbriae Proteins/genetics , Fimbriae, Bacterial/chemistry , Phylogeny , Deltaproteobacteria/classification , Deltaproteobacteria/metabolism , Electric Conductivity , Fimbriae Proteins/metabolism , Fimbriae, Bacterial/genetics , Fimbriae, Bacterial/metabolism , Methane/metabolism , Oxidation-Reduction
4.
mBio ; 8(1)2017 01 17.
Article in English | MEDLINE | ID: mdl-28096491

ABSTRACT

The electrically conductive pili (e-pili) of Geobacter sulfurreducens serve as a model for a novel strategy for long-range extracellular electron transfer. e-pili are also a new class of bioelectronic materials. However, the only other Geobacter pili previously studied, which were from G. uraniireducens, were poorly conductive. In order to obtain more information on the range of pili conductivities in Geobacter species, the pili of G. metallireducens were investigated. Heterologously expressing the PilA gene of G. metallireducens in G. sulfurreducens yielded a G. sulfurreducens strain, designated strain MP, that produced abundant pili. Strain MP exhibited phenotypes consistent with the presence of e-pili, such as high rates of Fe(III) oxide reduction and high current densities on graphite anodes. Individual pili prepared at physiologically relevant pH 7 had conductivities of 277 ± 18.9 S/cm (mean ± standard deviation), which is 5,000-fold higher than the conductivity of G. sulfurreducens pili at pH 7 and nearly 1 million-fold higher than the conductivity of G. uraniireducens pili at the same pH. A potential explanation for the higher conductivity of the G. metallireducens pili is their greater density of aromatic amino acids, which are known to be important components in electron transport along the length of the pilus. The G. metallireducens pili represent the most highly conductive pili found to date and suggest strategies for designing synthetic pili with even higher conductivities. IMPORTANCE: e-pili are a remarkable electrically conductive material that can be sustainably produced without harsh chemical processes from renewable feedstocks and that contain no toxic components in the final product. Thus, e-pili offer an unprecedented potential for developing novel materials, electronic devices, and sensors for diverse applications with a new "green" technology. Increasing e-pili conductivity will even further expand their potential applications. A proven strategy is to design synthetic e-pili that contain tryptophan, an aromatic amino acid not found in previously studied e-pili. The studies reported here demonstrate that a productive alternative approach is to search more broadly in the microbial world. Surprisingly, even though G. metallireducens and G. sulfurreducens are closely related, the conductivities of their e-pili differ by more than 3 orders of magnitude. The ability to produce e-pili with high conductivity without generating a genetically modified product enhances the attractiveness of this novel electronic material.


Subject(s)
Electric Conductivity , Electron Transport , Fimbriae Proteins/chemistry , Fimbriae Proteins/genetics , Geobacter/genetics , Geobacter/metabolism , Electrodes/microbiology , Ferric Compounds/metabolism , Gene Expression , Oxidation-Reduction , Recombinant Proteins/chemistry , Recombinant Proteins/genetics
5.
Small ; 12(33): 4481-5, 2016 Sep.
Article in English | MEDLINE | ID: mdl-27409066

ABSTRACT

Genetic modification to add tryptophan to PilA, the monomer for the electrically conductive pili of Geobacter sulfurreducens, yields conductive protein filaments 2000-fold more conductive than the wild-type pili while cutting the diameter in half to 1.5 nm.


Subject(s)
Electric Conductivity , Geobacter/chemistry , Nanowires/chemistry , Proteins/chemistry , Amino Acid Sequence , Fimbriae, Bacterial/metabolism , Fimbriae, Bacterial/ultrastructure , Nanowires/ultrastructure , Tryptophan/metabolism
6.
Front Microbiol ; 7: 980, 2016.
Article in English | MEDLINE | ID: mdl-27446021

ABSTRACT

Studies on the mechanisms for extracellular electron transfer in Geobacter species have primarily focused on Geobacter sulfurreducens, but the poor conservation of genes for some electron transfer components within the Geobacter genus suggests that there may be a diversity of extracellular electron transport strategies among Geobacter species. Examination of the gene sequences for PilA, the type IV pilus monomer, in Geobacter species revealed that the PilA sequence of Geobacter uraniireducens was much longer than that of G. sulfurreducens. This is of interest because it has been proposed that the relatively short PilA sequence of G. sulfurreducens is an important feature conferring conductivity to G. sulfurreducens pili. In order to investigate the properties of the G. uraniireducens pili in more detail, a strain of G. sulfurreducens that expressed pili comprised the PilA of G. uraniireducens was constructed. This strain, designated strain GUP, produced abundant pili, but generated low current densities and reduced Fe(III) very poorly. At pH 7, the conductivity of the G. uraniireducens pili was 3 × 10(-4) S/cm, much lower than the previously reported 5 × 10(-2) S/cm conductivity of G. sulfurreducens pili at the same pH. Consideration of the likely voltage difference across pili during Fe(III) oxide reduction suggested that G. sulfurreducens pili can readily accommodate maximum reported rates of respiration, but that G. uraniireducens pili are not sufficiently conductive to be an effective mediator of long-range electron transfer. In contrast to G. sulfurreducens and G. metallireducens, which require direct contact with Fe(III) oxides in order to reduce them, G. uraniireducens reduced Fe(III) oxides occluded within microporous beads, demonstrating that G. uraniireducens produces a soluble electron shuttle to facilitate Fe(III) oxide reduction. The results demonstrate that Geobacter species may differ substantially in their mechanisms for long-range electron transport and that it is important to have information beyond a phylogenetic affiliation in order to make conclusions about the mechanisms by which Geobacter species are transferring electrons to extracellular electron acceptors.

7.
J Am Chem Soc ; 137(40): 13130-7, 2015 Oct 14.
Article in English | MEDLINE | ID: mdl-26414066

ABSTRACT

Solar cells fabricated using alkyl ammonium metal halides as light absorbers have the right combination of high power conversion efficiency and ease of fabrication to realize inexpensive but efficient thin film solar cells. However, they degrade under prolonged exposure to sunlight. Herein, we show that this degradation is quasi-reversible, and that it can be greatly lessened by simple modifications of the solar cell operating conditions. We studied perovskite devices using electrochemical impedance spectroscopy (EIS) with methylammonium (MA)-, formamidinium (FA)-, and MA(x)FA(1-x) lead triiodide as active layers. From variable temperature EIS studies, we found that the diffusion coefficient using MA ions was greater than when using FA ions. Structural studies using powder X-ray diffraction (PXRD) show that for MAPbI3 a structural change and lattice expansion occurs at device operating temperatures. On the basis of EIS and PXRD studies, we postulate that in MAPbI3 the predominant mechanism of accelerated device degradation under sunlight involves thermally activated fast ion transport coupled with a lattice-expanding phase transition, both of which are facilitated by absorption of the infrared component of the solar spectrum. Using these findings, we show that the devices show greatly improved operation lifetimes and stability under white-light emitting diodes, or under a solar simulator with an infrared cutoff filter or with cooling.

8.
Chem Commun (Camb) ; 51(54): 10941-4, 2015 Jul 11.
Article in English | MEDLINE | ID: mdl-26062539

ABSTRACT

Thiol (-SH) groups within a Zr(IV)-based metal-organic framework (MOF) anchor Hg(II) atoms; oxidation by H2O2 then leads to acidic sulfonate functions for catalyzing acetylene hydration at room temperature.

SELECTION OF CITATIONS
SEARCH DETAIL
...