Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Cell Rep ; 43(7): 114394, 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38923455

ABSTRACT

The intricate interplay between resident cells and the extracellular matrix (ECM) profoundly influences cancer progression. In triple-negative breast cancer (TNBC), ECM architecture evolves due to the enrichment of lysyl oxidase, fibronectin, and collagen, promoting distant metastasis. Here we uncover a pivotal transcription regulatory mechanism involving the epigenetic regulator UBR7 and histone methyltransferase EZH2 in regulating transforming growth factor (TGF)-ß/Smad signaling, affecting the expression of ECM genes. UBR7 loss leads to a dramatic reduction in facultative heterochromatin mark H3K27me3, activating ECM genes. UBR7 plays a crucial role in matrix deposition in adherent cancer cells and spheroids, altering collagen content and lysyl oxidase activity, directly affecting matrix stiffness and invasiveness. These findings are further validated in vivo in mice models and TNBC patients, where reduced UBR7 levels are accompanied by increased ECM component expression and activity, leading to fibrosis-mediated matrix stiffness. Thus, UBR7 is a master regulator of matrix stiffening, influencing the metastatic potential of TNBC.

2.
Oncogene ; 43(23): 1727-1741, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38719949

ABSTRACT

Epigenetic regulation established during development to maintain patterns of transcriptional expression and silencing for metabolism and other fundamental cell processes can be reprogrammed in cancer, providing a molecular mechanism for persistent alterations in phenotype. Metabolic deregulation and reprogramming are thus an emerging hallmark of cancer with opportunities for molecular classification as a critical preliminary step for precision therapeutic intervention. Yet, acquisition of therapy resistance against most conventional treatment regimens coupled with tumor relapse, continue to pose unsolved problems for precision healthcare, as exemplified in breast cancer where existing data informs both cancer genotype and phenotype. Furthermore, epigenetic reprograming of the metabolic milieu of cancer cells is among the most crucial determinants of therapeutic resistance and cancer relapse. Importantly, subtype-specific epigenetic-metabolic interplay profoundly affects malignant transformation, resistance to chemotherapy, and response to targeted therapies. In this review, we therefore prismatically dissect interconnected epigenetic and metabolic regulatory pathways and then integrate them into an observable cancer metabolism-therapy-resistance axis that may inform clinical intervention. Optimally coupling genome-wide analysis with an understanding of metabolic elements, epigenetic reprogramming, and their integration by metabolic profiling may decode missing molecular mechanisms at the level of individual tumors. The proposed approach of linking metabolic biochemistry back to genotype, epigenetics, and phenotype for specific tumors and their microenvironment may thus enable successful mechanistic targeting of epigenetic modifiers and oncometabolites despite tumor metabolic heterogeneity.


Subject(s)
Breast Neoplasms , Drug Resistance, Neoplasm , Epigenesis, Genetic , Humans , Breast Neoplasms/genetics , Breast Neoplasms/pathology , Breast Neoplasms/metabolism , Breast Neoplasms/drug therapy , Drug Resistance, Neoplasm/genetics , Female , Gene Expression Regulation, Neoplastic , Metabolic Networks and Pathways/genetics
3.
Cancer Res ; 83(5): 657-666, 2023 03 02.
Article in English | MEDLINE | ID: mdl-36661847

ABSTRACT

Therapy resistance is imposing a daunting challenge on effective clinical management of breast cancer. Although the development of resistance to drugs is multifaceted, reprogramming of energy metabolism pathways is emerging as a central but heterogenous regulator of this therapeutic challenge. Metabolic heterogeneity in cancer cells is intricately associated with alterations of different signaling networks and activation of DNA damage response pathways. Here we consider how the dynamic metabolic milieu of cancer cells regulates their DNA damage repair ability to ultimately contribute to development of therapy resistance. Diverse epigenetic regulators are crucial in remodeling the metabolic landscape of cancer. This epigenetic-metabolic interplay profoundly affects genomic stability of the cancer cells as well as their resistance to genotoxic therapies. These observations identify defining mechanisms of cancer epigenetics-metabolism-DNA repair axis that can be critical for devising novel, targeted therapeutic approaches that could sensitize cancer cells to conventional treatment strategies.


Subject(s)
Breast Neoplasms , Humans , Female , Breast Neoplasms/genetics , Drug Resistance, Neoplasm/genetics , DNA Repair , DNA Damage , Epigenesis, Genetic
4.
Subcell Biochem ; 100: 3-65, 2022.
Article in English | MEDLINE | ID: mdl-36301490

ABSTRACT

Altered metabolism has become an emerging feature of cancer cells impacting their proliferation and metastatic potential in myriad ways. Proliferating heterogeneous tumor cells are surrounded by other resident or infiltrating cells, along with extracellular matrix proteins, and other secretory factors constituting the tumor microenvironment. The diverse cell types of the tumor microenvironment exhibit different molecular signatures that are regulated at their genetic and epigenetic levels. The cancer cells elicit intricate crosstalks with these supporting cells, exchanging essential metabolites which support their anabolic processes and can promote their survival, proliferation, EMT, angiogenesis, metastasis and even therapeutic resistance. In this context, carbohydrate metabolism ensures constant energy supply being a central axis from which other metabolic and biosynthetic pathways including amino acid and lipid metabolism and pentose phosphate pathway are diverged. In contrast to normal cells, increased glycolytic flux is a distinguishing feature of the highly proliferative cancer cells, which supports them to adapt to a hypoxic environment and also protects them from oxidative stress. Such rewired metabolic properties are often a result of epigenetic alterations in the cancer cells, which are mediated by several factors including, DNA, histone and non-histone protein modifications and non-coding RNAs. Conversely, epigenetic landscapes of the cancer cells are also dictated by their diverse metabolomes. Altogether, this metabolic and epigenetic interplay has immense potential for the development of efficient anti-cancer therapeutic strategies. In this book chapter we emphasize upon the significance of reprogrammed carbohydrate metabolism in regulating the tumor microenvironment and cancer progression, with an aim to explore the different metabolic and epigenetic targets for better cancer treatment.


Subject(s)
Neoplasms , Tumor Microenvironment , Humans , Neoplasms/drug therapy , Glycolysis/physiology , Carbohydrate Metabolism , Histones/metabolism
5.
Cell Death Dis ; 13(9): 766, 2022 09 05.
Article in English | MEDLINE | ID: mdl-36064715

ABSTRACT

Zinc Finger transcription factors are crucial in modulating various cellular processes, including differentiation. Chromatin reader Zinc Finger MYND (Myeloid, Nervy, and DEAF-1) type containing 8 (ZMYND8), an All-Trans Retinoic Acid (ATRA)-responsive gene, was previously shown to play a crucial role in promoting the expression of neuronal-lineage committed genes. Here, we report that ZMYND8 promotes neuronal differentiation by positively regulating canonical MAPT protein-coding gene isoform, a key player in the axonal development of neurons. Additionally, ZMYND8 modulates gene-isoform switching by epigenetically silencing key regulatory regions within the MAPT gene, thereby suppressing the expression of non-protein-coding isoforms such as MAPT213. Genetic deletion of ZMYND8 led to an increase in the MAPT213 that potentially suppressed the parental MAPT protein-coding transcript expression related to neuronal differentiation programs. In addition, ectopic expression of MAPT213 led to repression of MAPT protein-coding transcript. Similarly, ZMYND8-driven transcription regulation was also observed in other neuronal differentiation-promoting genes. Collectively our results elucidate a novel mechanism of ZMYND8-dependent transcription regulation of different neuronal lineage committing genes, including MAPT, to promote neural differentiation.


Subject(s)
RNA, Long Noncoding , Cell Differentiation/genetics , Chromatin , Gene Expression Regulation , RNA, Long Noncoding/genetics , Tretinoin/pharmacology , Tumor Suppressor Proteins/metabolism
6.
FEBS J ; 289(21): 6694-6713, 2022 11.
Article in English | MEDLINE | ID: mdl-35653238

ABSTRACT

Hepatitis B virus (HBV) is the leading cause of liver disease ranging from acute and chronic hepatitis to liver cirrhosis and hepatocellular carcinoma (HCC). Studies have revealed that HBV infection broadly reprogrammes the host cellular metabolic processes for viral pathogenesis. Previous reports have shown that glycolysis and gluconeogenesis are among the most deregulated pathways during HBV infection. We noted that despite being one of the rate-limiting enzymes of gluconeogenesis, the role and regulation of Fructose-1,6-bisphosphatase 1 (FBP1) during HBV infection is not much explored. In this study, we report FBP1 upregulation upon HBV infection and unravel a novel mechanism of epigenetic reprogramming of FBP1 by HBV via utilizing host factor Speckled 110 kDa (Sp110). Here, we identified acetylated lysine 18 of histone H3 (H3K18Ac) as a selective interactor of Sp110 Bromodomain. Furthermore, we found that Sp110 gets recruited on H3K18Ac-enriched FBP1 promoter, and facilitates recruitment of deacetylase Sirtuin 2 (SIRT2) on that site in the presence of HBV. SIRT2 in turn brings its interactor and transcriptional activator Hepatocyte nuclear factor 4-alpha to the promoter, which ultimately leads to a loss of DNA methylation near the cognate site. Interestingly, this Sp110 driven FBP1 regulation during infection was found to promote viral-borne HCC progression. Moreover, Sp110 can be used as a prognostic marker for the hepatitis-mediated HCC patients, where high Sp110 expression significantly lowered their survival. Thus, the epigenetic reader protein Sp110 has potential to be a therapeutic target to challenge HBV-induced HCCs.


Subject(s)
Carcinoma, Hepatocellular , Hepatitis B , Liver Neoplasms , Humans , Carcinoma, Hepatocellular/pathology , Epigenesis, Genetic , Fructose , Fructose-Bisphosphatase/genetics , Fructose-Bisphosphatase/metabolism , Hepatitis B/complications , Hepatitis B/genetics , Hepatitis B virus/genetics , Hepatitis B virus/metabolism , Hepatocyte Nuclear Factor 4/genetics , Liver Neoplasms/pathology , Sirtuin 2/metabolism
7.
J Biol Chem ; 298(8): 102200, 2022 08.
Article in English | MEDLINE | ID: mdl-35772497

ABSTRACT

DNA and core histones are hierarchically packaged into a complex organization called chromatin. The nucleosome assembly protein (NAP) family of histone chaperones is involved in the deposition of histone complexes H2A/H2B and H3/H4 onto DNA and prevents nonspecific aggregation of histones. Testis-specific Y-encoded protein (TSPY)-like protein 5 (TSPYL5) is a member of the TSPY-like protein family, which has been previously reported to interact with ubiquitin-specific protease USP7 and regulate cell proliferation and is thus implicated in various cancers, but its interaction with chromatin has not been investigated. In this study, we characterized the chromatin association of TSPYL5 and found that it preferentially binds histone H3/H4 via its C-terminal NAP-like domain both in vitro and ex vivo. We identified the critical residues involved in the TSPYL5-H3/H4 interaction and further quantified the binding affinity of TSPYL5 toward H3/H4 using biolayer interferometry. We then determined the binding stoichiometry of the TSPYL5-H3/H4 complex in vitro using a chemical cross-linking assay and size-exclusion chromatography coupled with multiangle laser light scattering. Our results indicate that a TSPYL5 dimer binds to either two histone H3/H4 dimers or a single tetramer. We further demonstrated that TSPYL5 has a specific affinity toward longer DNA fragments and that the same histone-binding residues are also critically involved in its DNA binding. Finally, employing histone deposition and supercoiling assays, we confirmed that TSPYL5 is a histone chaperone responsible for histone H3/H4 deposition and nucleosome assembly. We conclude that TSPYL5 is likely a new member of the NAP histone chaperone family.


Subject(s)
Histone Chaperones , Histones , Nuclear Proteins/metabolism , DNA/metabolism , Histone Chaperones/genetics , Histones/metabolism , Humans , Male , Molecular Chaperones/metabolism , Nucleosomes , Testis/metabolism , Ubiquitin-Specific Peptidase 7/metabolism
8.
Biosci Rep ; 42(4)2022 04 29.
Article in English | MEDLINE | ID: mdl-35438143

ABSTRACT

Innate and acquired resistance towards the conventional therapeutic regimen imposes a significant challenge for the successful management of cancer for decades. In patients with advanced carcinomas, acquisition of drug resistance often leads to tumor recurrence and poor prognosis after the first therapeutic cycle. In this context, cancer stem cells (CSCs) are considered as the prime drivers of therapy resistance in cancer due to their 'non-targetable' nature. Drug resistance in cancer is immensely influenced by different properties of CSCs such as epithelial-to-mesenchymal transition (EMT), a profound expression of drug efflux pump genes, detoxification genes, quiescence, and evasion of apoptosis, has been highlighted in this review article. The crucial epigenetic alterations that are intricately associated with regulating different mechanisms of drug resistance, have been discussed thoroughly. Additionally, special attention is drawn towards the epigenetic mechanisms behind the interaction between the cancer cells and their microenvironment which assists in tumor progression and therapy resistance. Finally, we have provided a cumulative overview of the alternative treatment strategies and epigenome-modifying therapies that show the potential of sensitizing the resistant cells towards the conventional treatment strategies. Thus, this review summarizes the epigenetic and molecular background behind therapy resistance, the prime hindrance of present day anti-cancer therapies, and provides an account of the novel complementary epi-drug-based therapeutic strategies to combat drug resistance.


Subject(s)
Drug Resistance, Neoplasm , Signal Transduction , Drug Resistance, Neoplasm/genetics , Epigenesis, Genetic/genetics , Epithelial-Mesenchymal Transition/genetics , Humans , Neoplasm Recurrence, Local/pathology , Neoplastic Stem Cells/pathology , Signal Transduction/genetics , Tumor Microenvironment/genetics
9.
FASEB J ; 35(9): e21814, 2021 09.
Article in English | MEDLINE | ID: mdl-34369624

ABSTRACT

Alteration in glucose homeostasis during cancer metabolism is an important phenomenon. Though several important transcription factors have been well studied in the context of the regulation of metabolic gene expression, the role of epigenetic readers in this regard remains still elusive. Epigenetic reader protein transcription factor 19 (TCF19) has been recently identified as a novel glucose and insulin-responsive factor that modulates histone posttranslational modifications to regulate glucose homeostasis in hepatocytes. Here we report that TCF19 interacts with a non-histone, well-known tumor suppressor protein 53 (p53) and co-regulates a wide array of metabolic genes. Among these, the p53-responsive carbohydrate metabolic genes Tp53-induced glycolysis and apoptosis regulator (TIGAR) and Cytochrome C Oxidase assembly protein 2 (SCO2), which are the key regulators of glycolysis and oxidative phosphorylation respectively, are under direct regulation of TCF19. Remarkably, TCF19 can form different transcription activation/repression complexes which show substantial overlap with that of p53, depending on glucose-mediated variant stress situations as obtained from IP/MS studies. Interestingly, we observed that TCF19/p53 complexes either have CBP or HDAC1 to epigenetically program the expression of TIGAR and SCO2 genes depending on short-term high glucose or prolonged high glucose conditions. TCF19 or p53 knockdown significantly altered the cellular lactate production and led to increased extracellular acidification rate. Similarly, OCR and cellular ATP production were reduced and mitochondrial membrane potential was compromised upon depletion of TCF19 or p53. Subsequently, through RNA-Seq analysis from patients with hepatocellular carcinoma, we observed that TCF19/p53-mediated metabolic regulation is fundamental for sustenance of cancer cells. Together the study proposes that TCF19/p53 complexes can regulate metabolic gene expression programs responsible for mitochondrial energy homeostasis and stress adaptation.


Subject(s)
Apoptosis Regulatory Proteins/genetics , Carcinoma, Hepatocellular/genetics , Liver Neoplasms/genetics , Mitochondria/genetics , Molecular Chaperones/genetics , Phosphoric Monoester Hydrolases/genetics , Transcription Factors/genetics , Transcription, Genetic/genetics , Tumor Suppressor Protein p53/genetics , Adaptation, Biological/genetics , Apoptosis/genetics , Cell Line, Tumor , Energy Metabolism/genetics , Glucose/genetics , Hep G2 Cells , Homeostasis/genetics , Humans , Membrane Potential, Mitochondrial/genetics , Stress, Physiological/genetics , Transcriptional Activation/genetics
10.
Cell Death Dis ; 11(12): 1073, 2020 12 15.
Article in English | MEDLINE | ID: mdl-33323928

ABSTRACT

The major challenge in chemotherapy lies in the gain of therapeutic resistance properties of cancer cells. The relatively small fraction of chemo-resistant cancer cells outgrows and are responsible for tumor relapse, with acquired invasiveness and stemness. We demonstrate that zinc-finger MYND type-8 (ZMYND8), a putative chromatin reader, suppresses stemness, drug resistance, and tumor-promoting genes, which are hallmarks of cancer. Reinstating ZMYND8 suppresses chemotherapeutic drug doxorubicin-induced tumorigenic potential (at a sublethal dose) and drug resistance, thereby resetting the transcriptional program of cells to the epithelial state. The ability of ZMYND8 to chemo-sensitize doxorubicin-treated metastatic breast cancer cells by downregulating tumor-associated genes was further confirmed by transcriptome analysis. Interestingly, we observed that ZMYND8 overexpression in doxorubicin-treated cells stimulated those involved in a good prognosis in breast cancer. Consistently, sensitizing the cancer cells with ZMYND8 followed by doxorubicin treatment led to tumor regression in vivo and revert back the phenotypes associated with drug resistance and stemness. Intriguingly, ZMYND8 modulates the bivalent or poised oncogenes through its association with KDM5C and EZH2, thereby chemo-sensitizing the cells to chemotherapy for better disease-free survival. Collectively, our findings indicate that poised chromatin is instrumental for the acquisition of chemo-resistance by cancer cells and propose ZMYND8 as a suitable epigenetic tool that can re-sensitize the chemo-refractory breast carcinoma.


Subject(s)
Oncogenes , Tumor Suppressor Proteins/metabolism , Animals , Antineoplastic Agents/pharmacology , Breast Neoplasms/drug therapy , Breast Neoplasms/genetics , Breast Neoplasms/pathology , Carcinogenesis/drug effects , Carcinogenesis/genetics , Carcinogenesis/pathology , Cell Line, Tumor , Cell Movement/drug effects , Cell Movement/genetics , Down-Regulation/drug effects , Down-Regulation/genetics , Doxorubicin/pharmacology , Doxorubicin/therapeutic use , Drug Resistance, Neoplasm/drug effects , Drug Resistance, Neoplasm/genetics , Enhancer of Zeste Homolog 2 Protein/metabolism , Epigenesis, Genetic/drug effects , Epithelial-Mesenchymal Transition/drug effects , Epithelial-Mesenchymal Transition/genetics , Female , Gene Expression Profiling , Gene Expression Regulation, Neoplastic/drug effects , Genome, Human , Histone Demethylases/metabolism , Humans , Mice, Inbred BALB C , Mice, Nude , Neoplastic Stem Cells/metabolism , Neoplastic Stem Cells/pathology , Phenotype , RNA, Messenger/genetics , RNA, Messenger/metabolism , Treatment Outcome , Triple Negative Breast Neoplasms/drug therapy , Triple Negative Breast Neoplasms/genetics , Triple Negative Breast Neoplasms/pathology
SELECTION OF CITATIONS
SEARCH DETAIL
...