Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
Add more filters










Publication year range
1.
J Chem Phys ; 158(3): 034504, 2023 Jan 21.
Article in English | MEDLINE | ID: mdl-36681647

ABSTRACT

The ability of salts to change the macroscopic viscosity of their aqueous solutions is described by the Jones-Dole equation with B-coefficient for the linear concentration term. The sign and value of this coefficient are often considered as a measure of the salt's structure-making/breaking ability, while the validity of this assignment is still under discussion. Here, by applying Raman and Brillouin scattering spectroscopy to various salts from the Hofmeister series, we studied a possible relation between macroscopic Jones-Dole's B-coefficient and the microscopic dynamic response. Raman spectroscopy provides information about molecular vibrations and Brillouin spectroscopy about acoustic phonons with wavelengths of hundreds of nanometers. It has been found that Jones-Dole's B-coefficient correlates linearly with the coefficients, describing the concentration dependences of the average OH stretching frequency, real and imaginary parts of gigahertz elastic modulus. These relationships have been interpreted to mean that the OH stretching frequency is a measure of the ion-induced changes in the water network that cause changes in both viscosity and gigahertz relaxation. Depolarized inelastic light scattering revealed that the addition of structure-making ions not only changes the frequency of the relaxation peak but also increases the low-frequency part of the relaxation susceptibility. It was shown that the ion-induced increase in the gigahertz elastic modulus can be described by changes in the relaxational susceptibility without a noticeable change in the instantaneous elastic modulus. The isotropic Raman contribution associated with the tetrahedral-like environment of H2O molecule does not correlate with Jones-Dole's B-coefficient, suggesting a minor influence of these tetrahedral-like configurations on viscosity.


Subject(s)
Salts , Water , Elastic Modulus , Water/chemistry , Ions , Spectrum Analysis, Raman
2.
Phys Rev E ; 104(5-1): 054406, 2021 Nov.
Article in English | MEDLINE | ID: mdl-34942765

ABSTRACT

Low-frequency Raman spectroscopy was used to study the dynamic response on a nanometer scale of aqueous suspensions of two-component lipid vesicles. Binary mixtures of saturated phospholipid (1,2-dipalmitoyl-sn-glycero-3-phosphocholine, DPPC) and cholesterol are interesting for possible coexistence of solidlike and liquid-ordered phases, while the phase coexistence was not reported for unsaturated phospholipid (1,2-dioleoyl-sn-glycero-3-phosphocholine, DOPC) and cholesterol mixtures. The DOPC-DPPC mixtures represent the well-documented case of coexisting domains of solidlike and liquid-disordered phases. These three series of lipid mixtures are studied here. A broad peak with the maximum in the range of 30-50cm^{-1} and a narrow peak near 10cm^{-1} are observed in the Raman susceptibility of the binary mixtures and attributed to the acousticlike vibrational density of states and layer modes, respectively. Parameters of the broad and narrow peaks are sensitive to lateral and conformational hydrocarbon chain ordering. It was also demonstrated that the low-frequency Raman susceptibility of multicomponent lipid bilayers allows one to determine the phase state of lipid bilayers and distinguish the homogeneous distribution of molecular complexes from coexisting domains with sizes above several nanometers. Thus, the low-frequency Raman spectroscopy provides unique information in studying phase coexistence in lipid bilayers.

3.
J Phys Condens Matter ; 33(49)2021 Sep 30.
Article in English | MEDLINE | ID: mdl-34521080

ABSTRACT

The aqueous suspension of 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) vesicles with different hydration levelsα(water-to-lipid mass ratio) have been studied by Brillouin spectroscopy in the temperature range from -190 °C to 70 °C. The samples with different hydration levels demonstrate similar temperature behavior of their sound velocity in the temperature range from -190 °C to -25 °C. There is a strong correlation between the hydration level of the sample and the character of the sound velocity temperature dependence at higher temperatures. Nevertheless, all hydrated samples demonstrate a jump in the sound velocity at the gel-fluid phase transition temperature. The amplitude of this jump depends on the hydration levelαof the sample. It has a maximum value in the sample with minimalαnecessary for the phospholipid membrane's full hydration. To evaluate the sound velocity in the phospholipid membrane, we applied the two-component model to analyze the experimental data obtained in the sample withα= 0.25 (close to the minimal necessary value for the full DPPC membrane hydration). It was found that for temperatures higher than 0 °C, the two-component model works well if we consider that sound velocity in water between vesicle layers is approximately a factor of two higher than in bulk water.

4.
Biochim Biophys Acta Biomembr ; 1863(2): 183514, 2021 02 01.
Article in English | MEDLINE | ID: mdl-33232709

ABSTRACT

The phospholipid/cholesterol binary model systems are an example of simple models whose structure has caused controversy and genuine interest over many decades. The cornerstone underlying the description of such models is the answer to the question of whether these membranes are separated into coexisting phases or domains. Here, we apply label-free Raman spectroscopy and differential scanning calorimetry (DSC) to verify the phase coexistence in 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC)/cholesterol binary model. Raman spectra demonstrate the peculiarity at 30% molar fraction of cholesterol. Above this concentration, Raman data demonstrate similar characteristics at T = 291, 298, 303 K. At lower molar fractions, at 303 K, we found the agreement of Raman spectra with the predictions of the lever rule of cholesterol. Taken together, low cooperativity of the transition at 30 mol% and the fulfillment of the lever rule suggest the existence of nanoclusters composed of approximately 4 DMPC and 2 cholesterol molecules. At 298 K, the compliance of the lever rule was found in the range from 0 to 20 mol% of cholesterol. At 291 K, the addition of 5% cholesterol leads to the abrupt change of Raman spectra parameters and their continuous evolution with the further increase of cholesterol molar fraction. It seems that cholesterol plays a twofold role in binary mixtures; it reduces the intermolecular cooperativity and forms clusters whose size and DMPC-to-cholesterol ratio depend on cholesterol concentration and temperature.


Subject(s)
Cholesterol/chemistry , Dimyristoylphosphatidylcholine/chemistry , Lipid Bilayers/chemistry , Calorimetry, Differential Scanning , Spectrum Analysis, Raman
5.
J Phys Chem B ; 124(41): 9079-9085, 2020 10 15.
Article in English | MEDLINE | ID: mdl-32970434

ABSTRACT

Suspensions of multilamellar vesicles of 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC) and hydrated and dehydrated aligned multilamellar samples of DMPC were studied by Brillouin spectroscopy in the temperature range from 90 to 333 K. The sound velocity of the longitudinal acoustic wave was evaluated from the Brillouin spectra. It was found that phase transition, hydration state, and planar or vesicular form of bilayers affect the gigahertz sound velocity. Usually, the temperature dependence of the sound velocity is weak in solid substances. Amazingly, the sound velocity of hydrated DMPC samples showed significant temperature-induced changes of up to 1.8 times, even within the solid-like gel phase. We explained this effect by temperature-induced excitations of the disordered conformational states of the hydrocarbon chains as well as anharmonic effects. In addition, the relevance of the gigahertz sound velocity to the description of subterahertz Raman features was demonstrated.

6.
Acta Crystallogr B Struct Sci Cryst Eng Mater ; 76(Pt 4): 654-660, 2020 Aug 01.
Article in English | MEDLINE | ID: mdl-32831284

ABSTRACT

Single crystals of SmAl3(BO3)4 were synthesized by the group growth on seeds method. The crystal structure was solved using a single-crystal experiment and the purity of the bulk material was proved by the Rietveld method. This borate crystallizes in the monoclinic C2/c space group with unit-cell parameters a = 7.2386 (3), b = 9.3412 (5), c = 11.1013 (4) Šand ß = 103.2240 (10)°. IR and Raman spectroscopic analyses confirmed the monoclinic structure of SmAl3(BO3)4. Under 532.1 nm excitation, luminescence spectra exhibit bands assignable to the transitions from 4G5/2 to 6H5/2, 6H7/2, 6H9/2 and 6H11/2. The similarity of the luminescence spectra of the trigonal and monoclinic polymorphs is explained by the minor role of Sm-O bond distortion and the primary role of rotational distortion of SmO6 octahedra. The smaller covalency of the Sm-O bond in alumoborates is deduced in comparison with galloborates. Calorimetric measurements did not reveal high-temperature structural phase transitions up to a temperature of 720 K.

7.
Phys Rev E ; 101(5-1): 052610, 2020 May.
Article in English | MEDLINE | ID: mdl-32575277

ABSTRACT

Recently it was shown [V. N. Novikov and A. P. Sokolov, Phys. Rev. E 92, 062304 (2015)10.1103/PhysRevE.92.062304] that the second derivative with respect to inverse temperature of the structural relaxation time in some supercooled molecular liquids has a sharp maximum. It marks the point at which the apparent activation energy begins to saturate with decreasing temperature. The elastic model of glass-forming liquids expresses the temperature dependence of the structural relaxation time through that of the shear modulus. In this paper, we test whether this model is able to predict the maximum of the second derivative. We confirm its presence in the elastic model by analyzing the temperature dependence of the Brillouin light scattering in salol. This is a very subtle feature of the temperature dependence, which is greatly enhanced when taking derivatives. Its presence in the Brillouin data provides strong support to the elastic model of glass-forming liquids.

8.
Chem Phys Lipids ; 230: 104926, 2020 08.
Article in English | MEDLINE | ID: mdl-32454008

ABSTRACT

Raman spectra of hydrated bilayers of 1,2-dilauroyl-sn-glycero-3-phosphocholine (12:0 PC), 1,2-dimyristoyl-sn-glycero-3-phosphocholine (14:0 PC), and 1,2-distearoyl-sn-glycero-3-phosphocholine (18:0 PC) were studied in a wide temperature range to characterize the temperature-dependent hydrocarbon chain disorder of the saturated phosphatidylcholines. Temperature dependencies of the Raman line intensities were analyzed for the antisymmetric CH2 stretching and CC stretching vibrations, which are sensitive to the lipid order. It was found that chain disordering processes occur significantly below the gel-fluid transition. The chain conformational order characterized by the CC stretching line intensity can be well described by a model involving the excitation of the ordered conformational state to the kinked and highly disordered, fluid-like state. A relation between the excitation energy to the disordered state and the enthalpy of the gel-fluid transition is discussed, including also data for other phosphatidylcholines studied before. Temperature behavior of the antisymmetric CH2 stretching line indicates that non-conformational degrees of freedom are released above ∼ 200 K. Experimental findings concerning the hydrocarbon chain length dependence of the Raman polarizability of antisymmetric CH2 stretching vibrations and a low-temperature solid-solid phase transition, identified in 12:0 PC at heating, are also discussed in the work.


Subject(s)
Hydrocarbons/chemistry , Phosphatidylcholines/chemistry , Spectrum Analysis, Raman , Temperature , Phase Transition
9.
Phys Rev E ; 99(6-1): 062410, 2019 Jun.
Article in English | MEDLINE | ID: mdl-31330595

ABSTRACT

The measurement of intracellular viscoelastic properties by Brillouin scattering is a rapidly developing field in biophysics and medicine. Here, the Brillouin spectroscopy is applied for a number of aqueous solutions of biorelevant molecules to reveal relations between the Brillouin line parameters (frequency and width) and viscosity or solute concentration. It is found that for the majority of the studied biorelevant molecules the solute concentration governs the Brillouin frequency in a universal manner. On the other hand, the relations between the macroscopic viscosity and Brillouin peak parameters are different for different solutes. We conclude that for biological fluids the viscosity evaluation from Brillouin data needs prior knowledge about the chemical composition. This result challenges the fidelity of the indirect experimental determinations of the cellular viscosity, when small molecule solutions are used for the calibration.


Subject(s)
Spectrum Analysis , Viscosity , Animals , Solutions , Water/chemistry
10.
Phys Rev E ; 99(2-1): 022417, 2019 Feb.
Article in English | MEDLINE | ID: mdl-30934267

ABSTRACT

Raman spectra in the low-frequency spectral range-between 5 and 90cm^{-1}-were studied for multilamellar bilayers prepared with cholesterol (Chol) and phospholipids of three different types: doubly unsaturated lipids 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC), monounsaturated lipids 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC), and fully saturated lipids 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC). The narrow peak seen below 250 K and positioned between 9 and 18cm^{-1}-depending on the system and temperature-was attributed to the vibrational eigenmode of a lipid monolayer. For the DOPC-Chol bilayer, the peak position and the peak width were found to monotonically increase and decrease, respectively, with the Chol concentration. For POPC-Chol and DMPC-Chol bilayers, these parameters revealed nonmonotonic concentration dependences, with an apparent minimum at the intermediate Chol content. The peak intensity was ascribed to interleaflet coupling. As in the literature, a coexistence of liquid-ordered and solid-ordered domains was suggested for the DMPC-Chol and POPC-Chol bilayers; the Chol concentration dependences of Raman peak parameters were discussed in line with this suggestion, under the assumption that the different composition of coexisting domains conserves upon cooling. We demonstrated that the obtained Raman data disagree with the suggested domain coexistence if the domain sizes are substantially larger than the lipid layer thickness.


Subject(s)
Cholesterol/chemistry , Lipid Bilayers/chemistry , Phospholipids/chemistry , Temperature , Vibration
11.
J Chem Phys ; 140(18): 184508, 2014 May 14.
Article in English | MEDLINE | ID: mdl-24832289

ABSTRACT

Low-frequency (down to 30 GHz) inelastic light scattering is studied in a multicomponent glass ZBLAN (ZrF4-BaF2-LaF3-AlF3-NaF) in a wide temperature range. The contributions of the THz vibrational spectrum (boson peak) and of the fast relaxation are extracted and analyzed. It is shown that the fast relaxation spectrum is described by a distribution of relaxation times leading to a power-law ν(α) dependence in the frequency range 30-300 GHz. Temperature dependence of α(T) is well described by the Gilroy-Phillips model, while the integrated intensity of the fast relaxation increases significantly with the temperature. This feature distinguishes the fast relaxation in ZBLAN from the case of most single-component glasses. Thermodynamic and kinetic fragility indexes are significantly different for the ZBLAN glass. The correlations between the boson peak intensity, elastic moduli, and fragility index, found earlier for single-component glasses, are fulfilled for the thermodynamic fragility index of ZBLAN. In contrast, the correlation between the fast relaxation intensity at Tg and the fragility holds better for the kinetic fragility index of ZBLAN. We propose that thermodynamic and kinetic fragilities reflect different aspects of glassy dynamics in the case of glass formers with the complex chemical composition and structure topology: the former correlates with the elastic properties and the boson peak, the latter with the relaxation.

12.
J Phys Chem B ; 117(36): 10686-90, 2013 Sep 12.
Article in English | MEDLINE | ID: mdl-23944689

ABSTRACT

The physics of gas hydrates are rich in interesting phenomena such as anomalies for thermal conductivity, self-preservation effects for decomposition, and others. Some of these phenomena are presumably attributed to the resonance interaction of the rattling motions of guest molecules or atoms with the lattice modes. This can be expected to induce some specific features in the low-frequency (THz) vibrational response. Here we present results for low-frequency Raman scattering in a Xe hydrate, supported by numerical calculations of vibrational density of states. A number of narrow lines, located in the range from 18 to 90 cm(-1), were found in the Raman spectrum. Numerical calculations confirm that these lines correspond to resonance modes of the Xe hydrate. Also, low-frequency Raman scattering was studied during gas hydrate decomposition, and two scenarios were observed. The first one is the direct decomposition of the Xe hydrate to water and gas. The second one is the hydrate decomposition to ice and gas with subsequent melting of ice. In the latter case, a transient low-frequency Raman band is observed, which is associated with low-frequency bands (e.g., boson peak) of disordered solids.

13.
J Chem Phys ; 137(6): 065103, 2012 Aug 14.
Article in English | MEDLINE | ID: mdl-22897314

ABSTRACT

Glycine phases formed when aqueous solutions were frozen and subsequently heated under different conditions were studied by Raman scattering, x-ray diffraction, and differential scanning calorimetry (DSC) techniques. Crystallization of ice I(h) was observed in all the cases. On cooling at the rates of 0.5 K∕min and 5 K∕min, glassy glycine was formed as an intermediate phase which lived about 1 min or less only, and then transformed into ß-polymorph of glycine. Quench cooling of glycine solutions (15% w∕w) in liquid nitrogen resulted in the formation of a mixture of crystalline water ice I(h) and a glassy glycine, which could be preserved at cryogenic temperatures (80 K) for an indefinitely long time. This mixture remained also quite stable for some time after heating above the cryogenic temperature. Subsequent heating under various conditions resulted in the transformation of the glycine glass into an unknown crystalline phase (glycine "X-phase") at 209-216 K, which at 218-226 K transformed into ß-polymorph of glycine. The "X-phase" was characterized by Raman spectroscopy; it could be obtained in noticeable amounts using a special preparation technique and tentatively characterized by x-ray powder diffraction (P2, a = 6.648 Å, b = 25.867 Å, c = 5.610 Å, ß = 113.12[ordinal indicator, masculine]); the formation of "X-phase" from the glycine glassy phase and its transformation into ß-polymorph were followed by DSC. Raman scattering technique with its power for unambiguous identification of the crystalline and glassy polymorphs without limitation on the crystallite size helped us to follow the phase transformations during quenching, heating, and annealing. The experimental findings are considered in relation to the problem of control of glycine polymorphism on crystallization.


Subject(s)
Glycine/chemistry , Phase Transition , Water/chemistry , Calorimetry, Differential Scanning , Crystallization , Freezing , Solutions/chemistry , Spectrum Analysis, Raman , X-Ray Diffraction
14.
J Chem Phys ; 131(6): 064505, 2009 Aug 14.
Article in English | MEDLINE | ID: mdl-19691395

ABSTRACT

Pulsed electron-nuclear double resonance applied to 15N nitroxide spin probes in molecular glasses is shown to be very sensitive to measurement of the A(XX) principal value of the hyperfine interaction tensor. For molecules experiencing fast restricted orientational motions (molecular librations), this provides a precise tool to determine the motion-averaged value. For nitroxides in glycerol and o-terphenyl glasses, the observed temperature dependence below 40 K may be readily interpreted as arising from quantum effects in librations, when the thermal energy of a librating molecule becomes comparable with the elementary quantum of the oscillator. The estimated elementary quanta for nitroxide librations, approximately 60 cm(-1) in glycerol and approximately 90 cm(-1) in o-terphenyl, are found to match the characteristic frequencies of the vibrational spectral densities seen in low-frequency Raman scattering for these glasses. Above approximately 80 K in glycerol and above approximately 120 K in o-terphenyl, the temperature dependences manifest a kink with a slightly smaller slope than at lower temperatures.

15.
Phys Rev E Stat Nonlin Soft Matter Phys ; 76(2 Pt 1): 021502, 2007 Aug.
Article in English | MEDLINE | ID: mdl-17930039

ABSTRACT

Parameters for orientational and inhomogeneous broadening are found from the line shape analysis of the Raman spectrum of the glass former alpha-picoline during cooling from low-viscous to glassy state. The orientational phase loss time tau(OPL), extracted from the analysis, coincides with the alpha relaxation time at T > T(A), where T(A) is the temperature of transition from an Arrhenius-like to a non-Arrhenius behavior for the alpha-relaxation time dependence on temperature. At lower temperatures tau(OPL) (T) continues the Arrhenius behavior, in contrast to the alpha-relaxation time. The width of inhomogeneous broadening of the Raman line decreases noticeably as temperature increases in the temperature range T(g) < T < T(A), approaching to zero at T approximately T(A). The findings evidence the transition of molecular dynamics from individual to cooperative at T = T(A).

16.
Phys Rev Lett ; 88(5): 055703, 2002 Feb 04.
Article in English | MEDLINE | ID: mdl-11863750

ABSTRACT

We present quasielastic light scattering and dielectric spectra of the glass former alpha-picoline. At high temperatures the evolution of the susceptibility minimum is well described by the mode coupling theory (MCT). Below the critical temperature T(c) the simple scaling laws of MCT fail due to the appearance of the excess wing of the alpha process, which shows a universal evolution as a function of log(10)tau(alpha). Taking this into account, however, we observe the predicted cusplike anomaly of the nonergodicity parameter as well as a crossover to "white noise."

SELECTION OF CITATIONS
SEARCH DETAIL
...