Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Clin Dysmorphol ; 30(2): 71-75, 2021 Apr 01.
Article in English | MEDLINE | ID: mdl-32925198

ABSTRACT

Feingold syndrome 1 (FGLDS1) is an autosomal dominant malformation syndrome, characterized by skeletal anomalies, microcephaly, facial dysmorphism, gastrointestinal atresias and learning disabilities. Mutations in the MYCN gene are known to be the cause of this syndrome. Congenital absence of the flexor pollicis longus (CAFPL) tendon is a rare hand anomaly. Most cases are sporadic and no genetic variants have been described associated with this abnormality. We describe here a pedigree combining familial CAFPL tendon as a feature of FGLDS1. Molecular analyses of whole exome sequence data in five affected family members spanning three generations of this family revealed a novel mutation in the MYCN gene (c.1171C>T; p.Arg391Cys). Variants in MYCN have not been published in association with isolated or syndromic CAFPL tendon, nor has this been described as a skeletal feature of Feingold syndrome. This report expands on the clinical and molecular spectrum of MYCN-related disorders and highlights the importance of MYCN protein in normal human thumb and foramen development.


Subject(s)
Eyelids/abnormalities , Intellectual Disability/diagnosis , Intellectual Disability/genetics , Limb Deformities, Congenital/diagnosis , Limb Deformities, Congenital/genetics , Microcephaly/diagnosis , Microcephaly/genetics , Mutation , N-Myc Proto-Oncogene Protein/genetics , Tendons/abnormalities , Thumb/abnormalities , Tracheoesophageal Fistula/diagnosis , Tracheoesophageal Fistula/genetics , Adult , Aged , Child , Female , Genetic Association Studies , Genetic Predisposition to Disease , Humans , Male , Middle Aged , Models, Molecular , N-Myc Proto-Oncogene Protein/chemistry , Pedigree , Phenotype , Structure-Activity Relationship , Exome Sequencing
4.
J Clin Invest ; 94(2): 808-14, 1994 Aug.
Article in English | MEDLINE | ID: mdl-8040336

ABSTRACT

Although collagen is known to enhance hepatocyte differentiation and hepatocytes produce collagen in vivo, the transcriptional factors responsible for collagen type I gene expression in hepatic cells are not known. LAP (Liver Activator Protein) is a member of the C/EBP family, which in differentiated hepatocytes contributes to the high levels of liver-specific gene expression. In this study we show that LAP binds to the collagen alpha 1(I) promoter at both reverse CCAAT motifs and activates transcription. Furthermore, an upstream element, collagen element I (-370/-344), which shares homology with the LAP binding cis-element of the albumin promoter (9 of 13 bp) is described. This collagen element I stimulates transcription in both orientations and when placed in front of either a homologous or a heterologous chimeric report construct. These experiments suggest that LAP may be important in the expression of collagen in differentiated hepatocytes through both the promoter and a newly described upstream element.


Subject(s)
Collagen/genetics , DNA-Binding Proteins/pharmacology , Genes, Regulator , Nuclear Proteins/pharmacology , Transcription Factors/pharmacology , Transcriptional Activation , Base Sequence , Binding Sites , CCAAT-Enhancer-Binding Proteins , DNA/metabolism , DNA-Binding Proteins/metabolism , Enhancer Elements, Genetic , Humans , Molecular Sequence Data , Nuclear Proteins/metabolism , Promoter Regions, Genetic , Tumor Cells, Cultured
SELECTION OF CITATIONS
SEARCH DETAIL
...