Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Genome ; 65(10): 505-511, 2022 Oct 01.
Article in English | MEDLINE | ID: mdl-35863076

ABSTRACT

The brown planthopper (BPH, Nilaparvata lugens Stål) is still considered a major threat to rice farmers. Exploring novel resistance genes that relate to the BPH population in the targeted rice-growing area might be a suitable solution. We identified and mapped the gene locus using 175 lines of F2:3 populations derived from Balamawee × PD601. Genomic analysis was then used to identify the candidate gene governing the resistance toward BPH. We discovered a novel genetic locus for BPH resistance in the long arm of chromosome 4 linked to markers Q31 and RM17007 at 4.76 and 5.42 cM, respectively, with total phenotypic variation reaching 52.21% at LOD 29.68. The tolerance mechanism influences the nature of this resistance, as shown by the Functional Plant Loss Index. The resistance level, mechanism of resistance, and physical mapping reveal that the resistance genes in this study differ from the previous study, therefore, we propose this novel gene as Bph44.


Subject(s)
Hemiptera , Oryza , Animals , Chromosome Mapping , Male , Oryza/genetics
2.
PLoS One ; 9(7): e101218, 2014.
Article in English | MEDLINE | ID: mdl-24992022

ABSTRACT

High water use efficiency (WUE) can be achieved by coordination of biomass accumulation and water consumption. WUE is physiologically and genetically linked to carbon isotope discrimination (CID) in leaves of plants. A population of 148 recombinant inbred lines (RILs) of sunflower derived from a cross between XRQ and PSC8 lines was studied to identify quantitative trait loci (QTL) controlling WUE and CID, and to compare QTL associated with these traits in different drought scenarios. We conducted greenhouse experiments in 2011 and 2012 by using 100 balances which provided a daily measurement of water transpired, and we determined WUE, CID, biomass and cumulative water transpired by plants. Wide phenotypic variability, significant genotypic effects, and significant negative correlations between WUE and CID were observed in both experiments. A total of nine QTL controlling WUE and eight controlling CID were identified across the two experiments. A QTL for phenotypic response controlling WUE and CID was also significantly identified. The QTL for WUE were specific to the drought scenarios, whereas the QTL for CID were independent of the drought scenarios and could be found in all the experiments. Our results showed that the stable genomic regions controlling CID were located on the linkage groups 06 and 13 (LG06 and LG13). Three QTL for CID were co-localized with the QTL for WUE, biomass and cumulative water transpired. We found that CID and WUE are highly correlated and have common genetic control. Interestingly, the genetic control of these traits showed an interaction with the environment (between the two drought scenarios and control conditions). Our results open a way for breeding higher WUE by using CID and marker-assisted approaches and therefore help to maintain the stability of sunflower crop production.


Subject(s)
Droughts , Helianthus/genetics , Water/metabolism , Biomass , Carbon Isotopes/analysis , Chromosome Mapping , Chromosomes, Plant/chemistry , Genetic Linkage , Genetic Variation , Genotype , Helianthus/metabolism , Phenotype , Plant Leaves/genetics , Plant Leaves/metabolism , Polymorphism, Single Nucleotide , Quantitative Trait Loci
3.
Bot Stud ; 55(1): 75, 2014 Dec.
Article in English | MEDLINE | ID: mdl-28510954

ABSTRACT

BACKGROUND: This article evaluates the potential of intraspecific variation for whole-root hydraulic properties in sunflower. We investigated genotypic differences related to root water transport in four genotypes selected because of their differing water use efficiency (JAC doi: 10.1111/jac.12079. 2014). We used a pressure-flux approach to characterize hydraulic conductance (L 0 ) which reflects the overall water uptake capacity of the roots and hydraulic conductivity (Lp r ) which represents the root intrinsic water permeability on an area basis. The contribution of aquaporins (AQPs) to water uptake was explored using mercuric chloride (HgCl2), a general AQP blocker. RESULTS: There were considerable variations in root morphology between genotypes. Mean values of L 0 and Lp r showed significant variation (above 60% in both cases) between recombinant inbred lines in control plants. Pressure-induced sap flow was strongly inhibited by HgCl2 treatment in all genotypes (more than 50%) and contribution of AQPs to hydraulic conductivity varied between genotypes. Treated root systems displayed markedly different L 0 values between genotypes whereas Lp r values were similar. CONCLUSIONS: Our analysis points to marked differences between genotypes in the intrinsic aquaporin-dependent path (Lp r in control plants) but not in the intrinsic AQP-independent paths (Lp r in HgCl2 treated plants). Overall, root anatomy was a major determinant of water transport properties of the whole organ and can compensate for a low AQP contribution. Hydraulic properties of root tissues and organs might have to be taken into account for plant breeding since they appear to play a key role in sunflower water balance and water use efficiency.

SELECTION OF CITATIONS
SEARCH DETAIL
...