Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Ocul Pharmacol Ther ; 39(8): 572-582, 2023 10.
Article in English | MEDLINE | ID: mdl-37797226

ABSTRACT

The dynamic and continuously evolving field of ophthalmology necessitates rigorous regulatory oversight in the United States. This review outlines the multifaceted Food and Drug Administration's (FDA) approval process for ophthalmic products, detailing the classifications, pathways, and regulatory compliance for devices, drugs, biologics, and combination products. Particular emphasis is placed on distinct frameworks for Class I, II, and III devices, as well as regulations for drugs, biologics, and combination products. The organizational structure of the FDA is detailed, with highlights on specific Ophthalmology oversight divisions, historical regulatory evolution, and initiatives such as Patient-Focused Drug Development. An in-depth examination of the regulatory journey, ranging from initial research to post-marketing surveillance, includes practical guidance through stages such as Pre-Investigational New Drug/Pre-Submission consultations, clinical trials, new drug application/biologics license application/premarket approval submissions, and FDA advisory committee interactions. The article underscores the importance of early interactions with the health authorities, interdisciplinary team collaboration, adherence to current standards, and the anticipation of policy changes to ensure patient safety. It concludes with an analysis of 4 key FDA-approved ophthalmic products, including Eylea®, Luxturna®, Alphagan P®, and the Raindrop® Near Vision Inlay, detailing their contributions to ophthalmic care and offering valuable insights into their respective clinical trials, regulatory pathways, and potential implications. These case studies are included to illustrate both successful and failed ophthalmic product launches, thereby highlighting the importance of alignment with regulatory compliance.


Subject(s)
Awards and Prizes , Biological Products , United States , Humans , United States Food and Drug Administration , Drug Approval , Pharmaceutical Preparations
2.
Int J Mol Sci ; 24(12)2023 Jun 08.
Article in English | MEDLINE | ID: mdl-37373037

ABSTRACT

Retinal ischemia-reperfusion (IR)-which ultimately results in retinal ganglion cell (RGC) death-is a common cause of visual impairment and blindness worldwide. IR results in various types of programmed cell death (PCD), which are of particular importance since they can be prevented by inhibiting the activity of their corresponding signaling cascades. To study the PCD pathways in ischemic RGCs, we used a mouse model of retinal IR and a variety of approaches including RNA-seq analysis, knockout animals, and animals treated with an iron chelator. In our RNA-seq analysis, we utilized RGCs isolated from retinas 24 h after IR. In ischemic RGCs, we found increased expression of many genes that regulate apoptosis, necroptosis, pyroptosis, oxytosis/ferroptosis, and parthanatos. Our data indicate that genetic ablation of death receptors protects RGCs from IR. We showed that the signaling cascades regulating ferrous iron (Fe2+) metabolism undergo significant changes in ischemic RGCs, leading to retinal damage after IR. This data suggests that the activation of death receptors and increased Fe2+ production in ischemic RGCs promote the simultaneous activation of apoptosis, necroptosis, pyroptosis, oxytosis/ferroptosis, and parthanatos pathways. Thus, a therapy is needed that concurrently regulates the activity of the multiple PCD pathways to reduce RGC death after IR.


Subject(s)
Reperfusion Injury , Retinal Diseases , Mice , Animals , Retinal Ganglion Cells/metabolism , Reperfusion Injury/metabolism , Apoptosis , Ischemia/metabolism , Retinal Diseases/genetics , Retinal Diseases/metabolism , Reperfusion , Receptors, Death Domain/metabolism
3.
Sci Rep ; 12(1): 17152, 2022 10 13.
Article in English | MEDLINE | ID: mdl-36229563

ABSTRACT

Ischemia-reperfusion (IR) injury is implicated in a large array of pathological conditions in the retina. Increasing experimental evidence suggests that programmed necrosis makes a significant contribution to inflammation and retinal damage triggered by IR. Since there are many types of programmed necrosis, it is important to identify those involved in retinal IR to determine the correct treatment. To this end, we used a mouse model of retinal IR and a variety of approaches including RNA-seq data analysis. Our RNA-seq data revealed the rapid development of ischemic pathology in the retina during the first 24 h after reperfusion. We found that at least four types of programmed necrosis including necroptosis, pyroptosis, oxytosis/ferroptosis, and parthanatos are simultaneously involved in retinal IR. Our data suggest that the high activity of the TNF pathway at the early stage of retinal IR leads to early activation of necroptosis while significant activity of other types of programmed necrosis appears later. Our results indicate that TNF, glutamate, and ferrous iron generated by Steap3 may be key players concurrently triggering at least necroptosis, oxytosis/ferroptosis, and parthanatos in ischemic retinal ganglion cells (RGCs). Thus, multiple signaling cascades involved in programmed necrosis should be synchronously targeted for therapeutic purposes to treat retinal IR.


Subject(s)
Ferroptosis , Parthanatos , Reperfusion Injury , Retinal Diseases , Animals , Glutamates , Iron , Ischemia , Mice , Necroptosis , Necrosis , Pyroptosis , Reperfusion , Reperfusion Injury/pathology , Retinal Diseases/etiology , Retinal Diseases/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...