Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Total Environ ; 838(Pt 1): 155660, 2022 Sep 10.
Article in English | MEDLINE | ID: mdl-35526637

ABSTRACT

Fires are natural phenomena that impact human behaviors, vegetation, and landscape functions. However, the long-term history of fire, especially in the permafrost marginal zone of Central Asia (Mongolia), is poorly understood. This paper presents the results of radiocarbon and short-lived radionuclides (210Pb and 137Cs) dating, pollen, geochemical, charcoal, and statistical analyses (Kohonen's artificial neural network) of sediment core obtained from Northern Mongolia (the Khentii Mountains region). Therefore, we present the first high-resolution fire history from Northern Mongolia covering the last 1000 years, based on a multiproxy analysis of peat archive data. The results revealed that most of the fires in the region were likely initiated by natural factors, which were probably related to heatwaves causing prolonged droughts. We have demonstrated the link between enhanced fires and "dzud", a local climatic phenomenon. The number of livestock, which has been increasing for several decades, and the observed climatic changes are superimposed to cause "dzud", a deadly combination of droughts and snowy winter, which affects fire intensity. We observed that the study area has a sensitive ecosystem that reacts quickly to climate change. In terms of changes in the vegetation, the reconstruction reflected climate variations during the last millennium, the degradation of permafrost and occurrence of fires. However, more sites with good chronologies are needed to thoroughly understand the spatial relationships between changing climate, permafrost degradation, and vegetation change, which ultimately affect the nomadic societies in the region of Central and Northern Mongolia.


Subject(s)
Ecosystem , Fires , Geologic Sediments/analysis , Humans , Mongolia , Trees
2.
Sci Total Environ ; 800: 149433, 2021 Dec 15.
Article in English | MEDLINE | ID: mdl-34392227

ABSTRACT

Greenhouse gases (GHGs) released from permafrost regions may have a positive feedback to climate change, but there is much uncertainty about additional warming from the permafrost carbon cycle. One of the main reasons for this uncertainty is that the observation data of large-scale GHG concentrations are sparse, especially for areas with rapid permafrost degradation. We selected the Mongolian Plateau as the study area. We first analyzed the active layer thickness and ground temperature changes using borehole observations. Based on ground observation data, we assessed the applicability of Greenhouse Gases Observing Satellite (GOSAT) carbon dioxide (CO2) and methane (CH4) datasets. Finally, we analyzed the temporal and spatial changes in near-surface CO2 and CH4 concentrations from 2010 to 2017 and their patterns in different permafrost regions. The results showed that the Mongolian permafrost has been experiencing rapid degradation. The annual average near-surface CO2 concentration increased gradually between 2.19 ppmv/yr and 2.38 ppmv/yr, whereas the near-surface CH4 concentration increased significantly from 7.76 ppbv/yr to 8.49 ppbv/yr. There were significant seasonal variations in near-surface CO2 and CH4 concentrations for continuous, discontinuous, sporadic, and isolated permafrost zones. The continuous and discontinuous permafrost zones had lower near-surface CO2 and CH4 concentrations in summer and autumn, whereas sporadic and isolated permafrost zones had higher near-surface CO2 and CH4 concentrations in winter and spring. Our results indicated that climate warming led to rapid permafrost degradation, and carbon-based GHG concentrations also increased rapidly in Mongolia. Although, GHG concentrations increased at rates similar to the global average and many factors can account for their changes, GHG concentration in the permafrost regions merits more attention in the future because the spatiotemporal distribution has indicated a different driving force for regional warming.


Subject(s)
Greenhouse Gases , Permafrost , Carbon Dioxide/analysis , Climate Change , Methane/analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...