Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Chem Phys ; 135(4): 044127, 2011 Jul 28.
Article in English | MEDLINE | ID: mdl-21806110

ABSTRACT

The estimator proposed recently by Delmas and Jourdain for waste-recycling Monte Carlo achieves variance reduction optimally with respect to a control variate that is evaluated directly using the simulation data. Here, the performance of this estimator is assessed numerically for free energy calculations in generic binary alloys and is compared to those of other estimators taken from the literature. A systematic investigation with varying simulation parameters of a simplified system, the anti-ferromagnetic Ising model, is first carried out in the transmutation ensemble using path-sampling. We observe numerically that (i) the variance of the Delmas-Jourdain estimator is indeed reduced compared to that of other estimators; and that (ii) the resulting reduction is close to the maximal possible one, despite the inaccuracy in the estimated control variate. More extensive path-sampling simulations involving an FeCr alloy system described by a many-body potential additionally show that (iii) gradual transmutations accommodate the atomic frustrations; thus, alleviating the numerical ergodicity issue present in numerous alloy systems and eventually enabling the determination of phase coexistence conditions.


Subject(s)
Alloys/chemistry , Monte Carlo Method , Thermodynamics , Chromium/chemistry , Computer Simulation , Iron/chemistry , Models, Chemical
2.
J Chem Phys ; 129(2): 024116, 2008 Jul 14.
Article in English | MEDLINE | ID: mdl-18624525

ABSTRACT

The entropy of a system transiently driven out of equilibrium by a time-inhomogeneous stochastic dynamics is first expressed as a transient response function generalizing the nonlinear Kawasaki-Crooks response. This function is then reformulated into three statistical averages defined over ensembles of nonequilibrium trajectories. The first average corresponds to a space-time thermodynamic perturbation relation, while the two following ones correspond to space-time thermodynamic integration relations. Provided that trajectories are initiated starting from a distribution of states that is analytically known, the ensemble averages are computationally amenable to Markov chain Monte Carlo methods. The relevance of importance sampling in path ensembles is confirmed in practice by computing the nonequilibrium entropy of a driven toy system. We finally study a situation where the dynamics produces entropy. In this case, we observe that space-time thermodynamic integration still yields converged estimates, while space-time thermodynamic perturbation turns out to converge very slowly.

SELECTION OF CITATIONS
SEARCH DETAIL
...