Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 24
Filter
Add more filters










Publication year range
1.
Nat Commun ; 14(1): 805, 2023 Feb 20.
Article in English | MEDLINE | ID: mdl-36808154

ABSTRACT

Planktonic calcifying organisms play a key role in regulating ocean carbonate chemistry and atmospheric CO2. Surprisingly, references to the absolute and relative contribution of these organisms to calcium carbonate production are lacking. Here we report quantification of pelagic calcium carbonate production in the North Pacific, providing new insights on the contribution of the three main planktonic calcifying groups. Our results show that coccolithophores dominate the living calcium carbonate (CaCO3) standing stock, with coccolithophore calcite comprising ~90% of total CaCO3 production, and pteropods and foraminifera playing a secondary role. We show that pelagic CaCO3 production is higher than the sinking flux of CaCO3 at 150 and 200 m at ocean stations ALOHA and PAPA, implying that a large portion of pelagic calcium carbonate is remineralised within the photic zone; this extensive shallow dissolution explains the apparent discrepancy between previous estimates of CaCO3 production derived from satellite observations/biogeochemical modeling versus estimates from shallow sediment traps. We suggest future changes in the CaCO3 cycle and its impact on atmospheric CO2 will largely depend on how the poorly-understood processes that determine whether CaCO3 is remineralised in the photic zone or exported to depth respond to anthropogenic warming and acidification.

2.
Sci Adv ; 8(46): eabq5434, 2022 Nov 18.
Article in English | MEDLINE | ID: mdl-36383653

ABSTRACT

Using new and published marine fossil radiocarbon (14C/C) measurements, a tracer uniquely sensitive to circulation and air-sea gas exchange, we establish several benchmarks for Atlantic, Southern, and Pacific deep-sea circulation and ventilation since the last ice age. We find the most 14C-depleted water in glacial Pacific bottom depths, rather than the mid-depths as they are today, which is best explained by a slowdown in glacial deep-sea overturning in addition to a "flipped" glacial Pacific overturning configuration. These observations cannot be produced by changes in air-sea gas exchange alone, and they underscore the major role for changes in the overturning circulation for glacial deep-sea carbon storage in the vast Pacific abyss and the concomitant drawdown of atmospheric CO2.

3.
Global Biogeochem Cycles ; 36(3): e2021GB007162, 2022 Mar.
Article in English | MEDLINE | ID: mdl-35865754

ABSTRACT

The inventory and variability of oceanic dissolved inorganic carbon (DIC) is driven by the interplay of physical, chemical, and biological processes. Quantifying the spatiotemporal variability of these drivers is crucial for a mechanistic understanding of the ocean carbon sink and its future trajectory. Here, we use the Estimating the Circulation and Climate of the Ocean-Darwin ocean biogeochemistry state estimate to generate a global-ocean, data-constrained DIC budget and investigate how spatial and seasonal-to-interannual variability in three-dimensional circulation, air-sea CO2 flux, and biological processes have modulated the ocean sink for 1995-2018. Our results demonstrate substantial compensation between budget terms, resulting in distinct upper-ocean carbon regimes. For example, boundary current regions have strong contributions from vertical diffusion while equatorial regions exhibit compensation between upwelling and biological processes. When integrated across the full ocean depth, the 24-year DIC mass increase of 64 Pg C (2.7 Pg C year-1) primarily tracks the anthropogenic CO2 growth rate, with biological processes providing a small contribution of 2% (1.4 Pg C). In the upper 100 m, which stores roughly 13% (8.1 Pg C) of the global increase, we find that circulation provides the largest DIC gain (6.3 Pg C year-1) and biological processes are the largest loss (8.6 Pg C year-1). Interannual variability is dominated by vertical advection in equatorial regions, with the 1997-1998 El Niño-Southern Oscillation causing the largest year-to-year change in upper-ocean DIC (2.1 Pg C). Our results provide a novel, data-constrained framework for an improved mechanistic understanding of natural and anthropogenic perturbations to the ocean sink.

4.
Nat Commun ; 13(1): 3763, 2022 06 30.
Article in English | MEDLINE | ID: mdl-35773248

ABSTRACT

The interoceanic exchange of water masses is modulated by flow through key oceanic choke points in the Drake Passage, the Indonesian Seas, south of Africa, and south of Tasmania. Here, we use the neodymium isotope signature (εNd) of cold-water coral skeletons from intermediate depths (1460‒1689 m) to trace circulation changes south of Tasmania during the last glacial period. The key feature of our dataset is a long-term trend towards radiogenic εNd values of ~-4.6 during the Last Glacial Maximum and Heinrich Stadial 1, which are clearly distinct from contemporaneous Southern Ocean εNd of ~-7. When combined with previously published radiocarbon data from the same corals, our results indicate that a unique radiogenic and young water mass was present during this time. This scenario can be explained by a more vigorous Pacific overturning circulation that supported a deeper outflow of Pacific waters, including North Pacific Intermediate Water, through the Tasman Sea.


Subject(s)
Anthozoa , Ice Cover , Animals , Oceans and Seas , Seawater , Water , Water Movements
5.
Sci Adv ; 8(10): eabl9653, 2022 Mar 11.
Article in English | MEDLINE | ID: mdl-35263127

ABSTRACT

Calcium carbonate (CaCO3) biomineralizing organisms have played major roles in the history of life and the global carbon cycle during the past 541 Ma. Both marine diversification and mass extinctions reflect physiological responses to environmental changes through time. An integrated understanding of carbonate biomineralization is necessary to illuminate this evolutionary record and to understand how modern organisms will respond to 21st century global change. Biomineralization evolved independently but convergently across phyla, suggesting a unity of mechanism that transcends biological differences. In this review, we combine CaCO3 skeleton formation mechanisms with constraints from evolutionary history, omics, and a meta-analysis of isotopic data to develop a plausible model for CaCO3 biomineralization applicable to all phyla. The model provides a framework for understanding the environmental sensitivity of marine calcifiers, past mass extinctions, and resilience in 21st century acidifying oceans. Thus, it frames questions about the past, present, and future of CaCO3 biomineralizing organisms.

6.
Ann Rev Mar Sci ; 13: 57-80, 2021 01.
Article in English | MEDLINE | ID: mdl-32946363

ABSTRACT

The dissolution of CaCO3 minerals in the ocean is a fundamental part of the marine alkalinity and carbon cycles. While there have been decades of work aimed at deriving the relationship between dissolution rate and mineral saturation state (a so-called rate law), no real consensus has been reached. There are disagreements between laboratory- and field-based studies and differences in rates for inorganic and biogenic materials. Rates based on measurements on suspended particles do not always agree with rates inferred from measurements made near the sediment-water interface of the actual ocean. By contrast, the freshwater dissolution rate of calcite has been well described by bulk rate measurements from a number of different laboratories, fit by basic kinetic theory, and well studied by atomic force microscopy and vertical scanning interferometry to document the processes at the atomic scale. In this review, we try to better unify our understanding of carbonate dissolution in the ocean via a relatively new, highly sensitive method we have developed combined with a theoretical framework guided by the success of the freshwater studies. We show that empirical curve fits of seawater data as a function of saturation state do not agree, largely because the curvature is itself a function of the thermodynamics. Instead, we show that models that consider both surface energetic theory and the complicated speciation of seawater and calcite surfaces in seawater are able to explain most of the most recent data.This new framework can also explain features of the historical data that have not been previously explained. The existence of a kink in the relationship between rate and saturation state, reflecting a change in dissolution mechanism, may be playing an important role in accelerating CaCO3 dissolution in key sedimentary environments.


Subject(s)
Calcium Carbonate/analysis , Models, Chemical , Oceanography/methods , Seawater/chemistry , Calcium Carbonate/chemistry , Carbon Cycle , Fresh Water/chemistry , Hydrogen-Ion Concentration , Oceans and Seas , Solubility , Thermodynamics
7.
Anal Chem ; 92(4): 3077-3085, 2020 02 18.
Article in English | MEDLINE | ID: mdl-32011865

ABSTRACT

The stable isotopes of sulfate, nitrate, and phosphate are frequently used to study geobiological processes of the atmosphere, ocean, as well as land. Conventionally, the isotopes of these and other oxyanions are measured by isotope-ratio sector mass spectrometers after conversion into gases. Such methods are prone to various limitations on sensitivity, sample throughput, or precision. In addition, there is no general tool that can analyze several oxyanions or all the chemical elements they contain. Here, we describe a new approach that can potentially overcome some of these limitations based on electrospray hyphenated with Quadrupole Orbitrap mass spectrometry. This technique yields an average accuracy of 1-2‰ for sulfate δ34S and δ18O and nitrate δ15N and δ18O, based on in-house and international standards. Less abundant variants such as δ17O, δ33S, and δ36S, and the 34S-18O "clumped" sulfate can be quantified simultaneously. The observed precision of isotope ratios is limited by the number of ions counted. The counting of rare ions can be accelerated by removing abundant ions with the quadrupole mass filter. Electrospray mass spectrometry (ESMS) exhibits high-throughput and sufficient sensitivity. For example, less than 1 nmol sulfate is required to determine 18O/34S ratios with 0.2‰ precision within minutes. A purification step is recommended for environmental samples as our proposed technique is susceptible to matrix effects. Building upon these initial provisions, new features of the isotopic anatomy of mineral ions can now be explored with ESMS instruments that are increasingly available to bioanalytical laboratories.


Subject(s)
Oxygen/analysis , Anions/analysis , Nitrogen Isotopes , Oxygen Isotopes , Spectrometry, Mass, Electrospray Ionization , Sulfur Isotopes
8.
Nat Commun ; 10(1): 44, 2019 01 09.
Article in English | MEDLINE | ID: mdl-30626879

ABSTRACT

Sulfur isotope fractionation resulting from microbial sulfate reduction (MSR) provides some of the earliest evidence of life, and secular variations in fractionation values reflect changes in biogeochemical cycles. Here we determine the sulfur isotope effect of the enzyme adenosine phosphosulfate reductase (Apr), which is present in all known organisms conducting MSR and catalyzes the first reductive step in the pathway and reinterpret the sedimentary sulfur isotope record over geological time. Small fractionations may be attributed to low sulfate concentrations and/or high respiration rates, whereas fractionations greater than that of Apr require a low chemical potential at that metabolic step. Since Archean sediments lack fractionation exceeding the Apr value of 20‰, they are indicative of sulfate reducers having had access to ample electron donors to drive their metabolisms. Large fractionations in post-Archean sediments are congruent with a decline of favorable electron donors as aerobic and other high potential metabolic competitors evolved.

9.
Proc Natl Acad Sci U S A ; 114(38): 10035-10040, 2017 09 19.
Article in English | MEDLINE | ID: mdl-28874529

ABSTRACT

Glacial-state greenhouse gas concentrations and Southern Hemisphere climate conditions persisted until ∼17.7 ka, when a nearly synchronous acceleration in deglaciation was recorded in paleoclimate proxies in large parts of the Southern Hemisphere, with many changes ascribed to a sudden poleward shift in the Southern Hemisphere westerlies and subsequent climate impacts. We used high-resolution chemical measurements in the West Antarctic Ice Sheet Divide, Byrd, and other ice cores to document a unique, ∼192-y series of halogen-rich volcanic eruptions exactly at the start of accelerated deglaciation, with tephra identifying the nearby Mount Takahe volcano as the source. Extensive fallout from these massive eruptions has been found >2,800 km from Mount Takahe. Sulfur isotope anomalies and marked decreases in ice core bromine consistent with increased surface UV radiation indicate that the eruptions led to stratospheric ozone depletion. Rather than a highly improbable coincidence, circulation and climate changes extending from the Antarctic Peninsula to the subtropics-similar to those associated with modern stratospheric ozone depletion over Antarctica-plausibly link the Mount Takahe eruptions to the onset of accelerated Southern Hemisphere deglaciation ∼17.7 ka.

10.
Proc Natl Acad Sci U S A ; 114(33): 8716-8721, 2017 08 15.
Article in English | MEDLINE | ID: mdl-28760954

ABSTRACT

Connections between glaciation, chemical weathering, and the global carbon cycle could steer the evolution of global climate over geologic time, but even the directionality of feedbacks in this system remain to be resolved. Here, we assemble a compilation of hydrochemical data from glacierized catchments, use this data to evaluate the dominant chemical reactions associated with glacial weathering, and explore the implications for long-term geochemical cycles. Weathering yields from catchments in our compilation are higher than the global average, which results, in part, from higher runoff in glaciated catchments. Our analysis supports the theory that glacial weathering is characterized predominantly by weathering of trace sulfide and carbonate minerals. To evaluate the effects of glacial weathering on atmospheric pCO2, we use a solute mixing model to predict the ratio of alkalinity to dissolved inorganic carbon (DIC) generated by weathering reactions. Compared with nonglacial weathering, glacial weathering is more likely to yield alkalinity/DIC ratios less than 1, suggesting that enhanced sulfide oxidation as a result of glaciation may act as a source of CO2 to the atmosphere. Back-of-the-envelope calculations indicate that oxidative fluxes could change ocean-atmosphere CO2 equilibrium by 25 ppm or more over 10 ky. Over longer timescales, CO2 release could act as a negative feedback, limiting progress of glaciation, dependent on lithology and the concentration of atmospheric O2 Future work on glaciation-weathering-carbon cycle feedbacks should consider weathering of trace sulfide minerals in addition to silicate minerals.

11.
Proc Natl Acad Sci U S A ; 114(31): 8175-8180, 2017 Aug 01.
Article in English | MEDLINE | ID: mdl-28720698

ABSTRACT

Near-equilibrium calcite dissolution in seawater contributes significantly to the regulation of atmospheric [Formula: see text] on 1,000-y timescales. Despite many studies on far-from-equilibrium dissolution, little is known about the detailed mechanisms responsible for calcite dissolution in seawater. In this paper, we dissolve 13C-labeled calcites in natural seawater. We show that the time-evolving enrichment of [Formula: see text] in solution is a direct measure of both dissolution and precipitation reactions across a large range of saturation states. Secondary Ion Mass Spectrometer profiles into the 13C-labeled solids confirm the presence of precipitated material even in undersaturated conditions. The close balance of precipitation and dissolution near equilibrium can alter the chemical composition of calcite deeper than one monolayer into the crystal. This balance of dissolution-precipitation shifts significantly toward a dissolution-dominated mechanism below about [Formula: see text] Finally, we show that the enzyme carbonic anhydrase (CA) increases the dissolution rate across all saturation states, and the effect is most pronounced close to equilibrium. This finding suggests that the rate of hydration of [Formula: see text] is a rate-limiting step for calcite dissolution in seawater. We then interpret our dissolution data in a framework that incorporates both solution chemistry and geometric constraints on the calcite solid. Near equilibrium, this framework demonstrates a lowered free energy barrier at the solid-solution interface in the presence of CA. This framework also indicates a significant change in dissolution mechanism at [Formula: see text], which we interpret as the onset of homogeneous etch pit nucleation.

12.
Proc Natl Acad Sci U S A ; 114(13): 3352-3357, 2017 03 28.
Article in English | MEDLINE | ID: mdl-28298529

ABSTRACT

The Southern Ocean regulates the ocean's biological sequestration of CO2 and is widely suspected to underpin much of the ice age decline in atmospheric CO2 concentration, but the specific changes in the region are debated. Although more complete drawdown of surface nutrients by phytoplankton during the ice ages is supported by some sediment core-based measurements, the use of different proxies in different regions has precluded a unified view of Southern Ocean biogeochemical change. Here, we report measurements of the 15N/14N of fossil-bound organic matter in the stony deep-sea coral Desmophyllum dianthus, a tool for reconstructing surface ocean nutrient conditions. The central robust observation is of higher 15N/14N across the Southern Ocean during the Last Glacial Maximum (LGM), 18-25 thousand years ago. These data suggest a reduced summer surface nitrate concentration in both the Antarctic and Subantarctic Zones during the LGM, with little surface nitrate transport between them. After the ice age, the increase in Antarctic surface nitrate occurred through the deglaciation and continued in the Holocene. The rise in Subantarctic surface nitrate appears to have had both early deglacial and late deglacial/Holocene components, preliminarily attributed to the end of Subantarctic iron fertilization and increasing nitrate input from the surface Antarctic Zone, respectively.


Subject(s)
Anthozoa/chemistry , Carbon Dioxide/analysis , Animals , Antarctic Regions , Anthozoa/metabolism , Atmosphere , Carbon Dioxide/metabolism , Nitrates/analysis , Oceans and Seas , Phytoplankton/chemistry , Phytoplankton/metabolism , Seawater/chemistry
13.
Science ; 346(6210): 735-9, 2014 Nov 07.
Article in English | MEDLINE | ID: mdl-25378621

ABSTRACT

In the low-oxygen Archean world (>2400 million years ago), seawater sulfate concentrations were much lower than today, yet open questions frustrate the translation of modern measurements of sulfur isotope fractionations into estimates of Archean seawater sulfate concentrations. In the water column of Lake Matano, Indonesia, a low-sulfate analog for the Archean ocean, we find large (>20 per mil) sulfur isotope fractionations between sulfate and sulfide, but the underlying sediment sulfides preserve a muted range of δ(34)S values. Using models informed by sulfur cycling in Lake Matano, we infer Archean seawater sulfate concentrations of less than 2.5 micromolar. At these low concentrations, marine sulfate residence times were likely 10(3) to 10(4) years, and sulfate scarcity would have shaped early global biogeochemical cycles, possibly restricting biological productivity in Archean oceans.


Subject(s)
Biological Products/history , Seawater/chemistry , Sulfates/history , Biological Products/chemical synthesis , Biological Products/chemistry , History, Ancient , Indonesia , Sulfates/analysis , Sulfur Isotopes/analysis , Sulfur Isotopes/history
14.
Nature ; 511(7507): 75-8, 2014 Jul 03.
Article in English | MEDLINE | ID: mdl-24990748

ABSTRACT

Several large and rapid changes in atmospheric temperature and the partial pressure of carbon dioxide in the atmosphere--probably linked to changes in deep ocean circulation--occurred during the last deglaciation. The abrupt temperature rise in the Northern Hemisphere and the restart of the Atlantic meridional overturning circulation at the start of the Bølling-Allerød interstadial, 14,700 years ago, are among the most dramatic deglacial events, but their underlying physical causes are not known. Here we show that the release of heat from warm waters in the deep North Atlantic Ocean probably triggered the Bølling-Allerød warming and reinvigoration of the Atlantic meridional overturning circulation. Our results are based on coupled radiocarbon and uranium-series dates, along with clumped isotope temperature estimates, from water column profiles of fossil deep-sea corals in a limited area of the western North Atlantic. We find that during Heinrich stadial 1 (the cool period immediately before the Bølling-Allerød interstadial), the deep ocean was about three degrees Celsius warmer than shallower waters above. This reversal of the ocean's usual thermal stratification pre-dates the Bølling-Allerød warming and must have been associated with increased salinity at depth to preserve the static stability of the water column. The depleted radiocarbon content of the warm and salty water mass implies a long-term disconnect from rapid surface exchanges, and, although uncertainties remain, is most consistent with a Southern Ocean source. The Heinrich stadial 1 ocean profile is distinct from the modern water column, that for the Last Glacial Maximum and that for the Younger Dryas, suggesting that the patterns we observe are a unique feature of the deglacial climate system. Our observations indicate that the deep ocean influenced dramatic Northern Hemisphere warming by storing heat at depth that preconditioned the system for a subsequent abrupt overturning event during the Bølling-Allerød interstadial.


Subject(s)
Hot Temperature , Seawater/analysis , Water Movements , Animals , Anthozoa/physiology , Atlantic Ocean , Carbon Radioisotopes , Global Warming/history , History, Ancient , Ice Cover , Time Factors
15.
Proc Natl Acad Sci U S A ; 111(24): 8753-8, 2014 Jun 17.
Article in English | MEDLINE | ID: mdl-24889624

ABSTRACT

In the modern climate, the ocean below 2 km is mainly filled by waters sinking into the abyss around Antarctica and in the North Atlantic. Paleoproxies indicate that waters of North Atlantic origin were instead absent below 2 km at the Last Glacial Maximum, resulting in an expansion of the volume occupied by Antarctic origin waters. In this study we show that this rearrangement of deep water masses is dynamically linked to the expansion of summer sea ice around Antarctica. A simple theory further suggests that these deep waters only came to the surface under sea ice, which insulated them from atmospheric forcing, and were weakly mixed with overlying waters, thus being able to store carbon for long times. This unappreciated link between the expansion of sea ice and the appearance of a voluminous and insulated water mass may help quantify the ocean's role in regulating atmospheric carbon dioxide on glacial-interglacial timescales. Previous studies pointed to many independent changes in ocean physics to account for the observed swings in atmospheric carbon dioxide. Here it is shown that many of these changes are dynamically linked and therefore must co-occur.


Subject(s)
Ice Cover , Oceans and Seas , Algorithms , Antarctic Regions , Carbon Cycle , Climate , Computer Simulation , Models, Theoretical , Oceanography , Seawater , Time Factors , Water Movements
16.
Anal Chim Acta ; 793: 44-52, 2013 Sep 02.
Article in English | MEDLINE | ID: mdl-23953205

ABSTRACT

The study of Fe, Zn and Cd stable isotopes (δ(56)Fe, δ(66)Zn and δ(114)Cd) in seawater is a new field, which promises to elucidate the marine cycling of these bioactive trace metals. However, the analytical challenges posed by the low concentration of these metals in seawater has meant that previous studies have typically required large sample volumes, highly limiting data collection in the oceans. Here, we present the first simultaneous method for the determination of these three isotope systems in seawater, using Nobias PA-1 chelating resin to extract metals from seawater, purification by anion exchange chromatography, and analysis by double spike MC-ICPMS. This method is designed for use on only a single litre of seawater and has blanks of 0.3, 0.06 and <0.03 ng for Fe, Zn and Cd respectively, representing a 1-20 fold reduction in sample size and a 4-130 decrease in blank compared to previously reported methods. The procedure yields data with high precision for all three elements (typically 0.02-0.2‰; 1σ internal precision), allowing us to distinguish natural variability in the oceans, which spans 1-3‰ for all three isotope systems. Simultaneous extraction and purification of three metals makes this method ideal for high-resolution, large-scale endeavours such as the GEOTRACES program.


Subject(s)
Cadmium/analysis , Iron/analysis , Mass Spectrometry , Seawater/chemistry , Zinc/analysis , Molecular Weight
17.
Science ; 340(6140): 1564-6, 2013 Jun 28.
Article in English | MEDLINE | ID: mdl-23744779

ABSTRACT

Atmospheric deep convection in the west Pacific plays a key role in the global heat and moisture budgets, yet its response to orbital and abrupt climate change events is poorly resolved. Here, we present four absolutely dated, overlapping stalagmite oxygen isotopic records from northern Borneo that span most of the last glacial cycle. The records suggest that northern Borneo's hydroclimate shifted in phase with precessional forcing but was only weakly affected by glacial-interglacial changes in global climate boundary conditions. Regional convection likely decreased during Heinrich events, but other Northern Hemisphere abrupt climate change events are notably absent. The new records suggest that the deep tropical Pacific hydroclimate variability may have played an important role in shaping the global response to the largest abrupt climate change events.


Subject(s)
Climate Change , Ice Cover , Tropical Climate , Atmosphere , Borneo , Convection , Oxygen Isotopes/analysis , Pacific Ocean
18.
Proc Natl Acad Sci U S A ; 109(19): E1134-42, 2012 May 08.
Article in English | MEDLINE | ID: mdl-22331892

ABSTRACT

Deciphering the evolution of global climate from the end of the Last Glacial Maximum approximately 19 ka to the early Holocene 11 ka presents an outstanding opportunity for understanding the transient response of Earth's climate system to external and internal forcings. During this interval of global warming, the decay of ice sheets caused global mean sea level to rise by approximately 80 m; terrestrial and marine ecosystems experienced large disturbances and range shifts; perturbations to the carbon cycle resulted in a net release of the greenhouse gases CO(2) and CH(4) to the atmosphere; and changes in atmosphere and ocean circulation affected the global distribution and fluxes of water and heat. Here we summarize a major effort by the paleoclimate research community to characterize these changes through the development of well-dated, high-resolution records of the deep and intermediate ocean as well as surface climate. Our synthesis indicates that the superposition of two modes explains much of the variability in regional and global climate during the last deglaciation, with a strong association between the first mode and variations in greenhouse gases, and between the second mode and variations in the Atlantic meridional overturning circulation.


Subject(s)
Climate , Global Warming , Ice Cover , Temperature , Atmosphere/analysis , Biological Evolution , Carbon Dioxide/metabolism , Ecosystem , Geography , Methane/metabolism , Models, Theoretical , Monte Carlo Method , Oxygen/metabolism , Principal Component Analysis , Seawater , Time Factors , Water Movements
19.
Anal Chem ; 81(21): 9027-34, 2009 Nov 01.
Article in English | MEDLINE | ID: mdl-19807109

ABSTRACT

We have developed a highly sensitive and robust method for the analysis of delta(34)S in individual organic compounds by coupled gas chromatography (GC) and multicollector inductively coupled plasma mass spectrometry (MC-ICPMS). The system requires minimal alteration of commercial hardware and is amenable to virtually all sample introduction methods. Isobaric interference from O(2)(+) is minimized by employing dry plasma conditions and is cleanly resolved at all masses using medium resolution on the Thermo Neptune MC-ICPMS. Correction for mass bias is accomplished using standard-sample bracketing with peaks of SF(6) reference gas. The precision of measured delta(34)S values approaches 0.1 per thousand for analytes containing >40 pmol S and is better than 0.5 per thousand for those containing as little as 6 pmol S. This is within a factor of 2 of theoretical shot-noise limits. External accuracy is better than 0.3 per thousand. Integrating only the center of chromatographic peaks, rather than the entire peak, offers significant gain in precision and chromatographic resolution with minimal effect on accuracy but requires further study for verification as a routine method. Coelution of organic compounds that do not contain S can cause degraded analytical precision. Analyses of crude oil samples show wide variability in delta(34)S and demonstrate the robustness and precision of the method in complex environmental samples.


Subject(s)
Chromatography, Gas/methods , Mass Spectrometry/methods , Volatile Organic Compounds/analysis , Software , Sulfur Compounds/analysis , Sulfur Compounds/chemistry , Sulfur Isotopes , Volatile Organic Compounds/chemistry
20.
Nature ; 449(7161): 452-5, 2007 Sep 27.
Article in English | MEDLINE | ID: mdl-17898765

ABSTRACT

Models and palaeoclimate data suggest that the tropical Pacific climate system plays a key part in the mechanisms underlying orbital-scale and abrupt climate change. Atmospheric convection over the western tropical Pacific is a major source of heat and moisture to extratropical regions, and may therefore influence the global climate response to a variety of forcing factors. The response of tropical Pacific convection to changes in global climate boundary conditions, abrupt climate changes and radiative forcing remains uncertain, however. Here we present three absolutely dated oxygen isotope records from stalagmites in northern Borneo that reflect changes in west Pacific warm pool hydrology over the past 27,000 years. Our results suggest that convection over the western tropical Pacific weakened 18,000-20,000 years ago, as tropical Pacific and Antarctic temperatures began to rise during the early stages of deglaciation. Convective activity, as inferred from oxygen isotopes, reached a minimum during Heinrich event 1 (ref. 10), when the Atlantic meridional overturning circulation was weak, pointing to feedbacks between the strength of the overturning circulation and tropical Pacific hydrology. There is no evidence of the Younger Dryas event in the stalagmite records, however, suggesting that different mechanisms operated during these two abrupt deglacial climate events. During the Holocene epoch, convective activity appears to track changes in spring and autumn insolation, highlighting the sensitivity of tropical Pacific convection to external radiative forcing. Together, these findings demonstrate that the tropical Pacific hydrological cycle is sensitive to high-latitude climate processes in both hemispheres, as well as to external radiative forcing, and that it may have a central role in abrupt climate change events.

SELECTION OF CITATIONS
SEARCH DETAIL
...