Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Brain Cogn ; 168: 105970, 2023 06.
Article in English | MEDLINE | ID: mdl-37086556

ABSTRACT

Work on multiple-system theories of cognition mostly focused on the systems themselves, while limited work has been devoted to understanding the interactions between systems. Generally, multiple-system theories include a model-based decision system supported by the prefrontal cortex and a model-free decision system supported by the striatum. Here we propose a neurobiological model to describe the interactions between model-based and model-free decision systems in category learning. The proposed model used spiking neurons to simulate activity of the hyperdirect pathway of the basal ganglia. The hyperdirect pathway acts as a gate for the response signal from the model-free system located in the striatum. We propose that the model-free system's response is inhibited when the model-based system is in control of the response. The new model was used to simulate published data from young adults, people with Parkinson's disease, and aged-matched older adults. The simulation results further suggest that system-switching ability may be related to individual differences in executive function. A new behavioral experiment tested this model prediction. The results show that an updating score predicts the ability to switch system in a categorization task. The article concludes with new model predictions and implications of the results for research on system interactions.


Subject(s)
Learning , Parkinson Disease , Young Adult , Humans , Aged , Learning/physiology , Cognition/physiology , Basal Ganglia/physiology , Executive Function/physiology , Prefrontal Cortex/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...