Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 21
Filter
Add more filters










Publication year range
1.
Biotechnol J ; 19(1): e2300275, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37861236

ABSTRACT

Phenylalanine ammonia-lyase (PAL) is a crucial enzyme for various biotechnology applications, such as producing phenols, antioxidants, and nutraceuticals. However, feedback inhibition from its product, cinnamic acid, limits its forward reaction rate. Therefore, this study aims to address the feedback inhibition in PAL using enzyme engineering strategies. Random and site-directed mutagenesis approaches were utilized to screen mutant enzymes with ameliorated tolerance against cinnamic acid. A thermotolerant and cinnamate-tolerant mutant was rationally identified using a high throughput screening method and subsequent biochemical characterization. We evaluated cinnamate affinity among the seven rationally selected mutations, and the T102E mutation was identified as the most promising mutant. This mutant showed a six-fold reduction in the affinity of PAL for cinnamic acid and a two-fold increase in operational stability compared with native PAL. Furthermore, the enzyme was immobilized on carbon nanotubes to increase its robustness and reusability. The immobilized mutant PAL showed greater efficiency in the deamination of phenylalanine present in protein hydrolysate than its free form. The rationale behind the enhancement of cinnamate tolerance was validated using molecular dynamic simulations. Overall, the knowledge of the sequence-function relationship of PAL was applied to drive enzyme engineering to develop highly tolerant PAL.


Subject(s)
Nanotubes, Carbon , Phenylalanine Ammonia-Lyase , Phenylalanine Ammonia-Lyase/genetics , Phenylalanine Ammonia-Lyase/chemistry , Phenylalanine Ammonia-Lyase/metabolism , Feedback , Cinnamates , Biotransformation
2.
J Appl Microbiol ; 134(5)2023 May 02.
Article in English | MEDLINE | ID: mdl-37160352

ABSTRACT

AIMS: To perform an integrated comparative analysis of metabolic pathway to understand coenzyme Q10 (CoQ10) production in Agrobacterium tumefaciens. METHODS AND RESULTS: Comparative analysis of the CoQ10 metabolic pathway in 10 organisms using a genome to KEGG orthology program (G2KO) and the KEGG database elucidated the completeness of the production pathway in A. tumefaciens. The specific roles of the key precursors and the enzymes in the metabolic network were subsequently confirmed using pathway inhibitors and enhancers. While the use of fosmidomycin and glyphosate was found to inhibit CoQ10 production by 54.54% to 99%, the supplementation of polyprenyl pyrophosphate of the methylerythritol 4-phosphate pathway and 4-hydroxybenzoate precursor of the shikimate pathway did increse the production of CoQ10 by 2.3-fold. CONCLUSIONS: The present study provides a comprehensive understanding of the CoQ10 biosynthetic pathway in A. tumefaciens, which would assist rational metabolic engineering strategies for augmenting CoQ10 biosynthesis.


Subject(s)
Agrobacterium tumefaciens , Metabolic Networks and Pathways , Agrobacterium tumefaciens/genetics , Phosphates
3.
Biotechnol Biofuels Bioprod ; 16(1): 48, 2023 Mar 16.
Article in English | MEDLINE | ID: mdl-36927685

ABSTRACT

BACKGROUND: The exact mechanism by which fungal strains sense insoluble cellulose is unknown, but research points to the importance of transglycosylation products generated by fungi during cellulose breakdown. Here, we used multi-omics approach to identify the transglycosylation metabolites and determine their function in cellulase induction in a model strain, Talaromyces cellulolyticus MTCC25456. RESULTS: Talaromyces sp. is a novel hypercellulolytic fungal strain. Based on genome scrutiny and biochemical analysis, we predicted the presence of cellulases on the surface of its spores. We performed metabolome analysis to show that these membrane-bound cellulases act on polysaccharides to form a mixture of disaccharides and their transglycosylated derivatives. Inevitably, a high correlation existed between metabolite data and the KEGG enrichment analysis of differentially expressed genes in the carbohydrate metabolic pathway. Analysis of the contribution of the transglycosylation product mixtures to cellulase induction revealed a 57% increase in total cellulase. Further research into the metabolites, using in vitro induction tests and response surface methodology, revealed that Talaromyces sp. produces cell wall-breaking enzymes in response to cellobiose and gentiobiose as a stimulant. Precisely, a 2.5:1 stoichiometric ratio of cellobiose to gentiobiose led to a 2.4-fold increase in cellulase synthesis. The application of the optimized inducers in cre knockout strain significantly increased the enzyme output. CONCLUSION: This is the first study on the objective evaluation and enhancement of cellulase production using optimized inducers. Inducer identification and genetic engineering boosted the cellulase production in the cellulolytic fungus Talaromyces sp.

4.
Bioresour Technol ; 363: 127856, 2022 Nov.
Article in English | MEDLINE | ID: mdl-36058538

ABSTRACT

Food waste (FW) generated through various scenarios from farm to fork causes serious environmental problems when either incinerated or disposed inappropriately. The presence of significant amounts of carbohydrates, proteins, and lipids enable FW to serve as sustainable and renewable feedstock for the biorefineries. Implementation of multiple substrates and product biorefinery as a platform could pursue an immense potential of reducing costs for bio-based process and improving its commercial viability. The review focuses on conversion of surplus FW into range of value-added products including biosurfactants, biopolymers, diols, and bioenergy. The review includes in-depth description of various types of FW, their chemical and nutrient compositions, current valorization techniques and regulations. Further, it describes limitations of FW as feedstock for biorefineries. In the end, review discuss future scope to provide a clear path for sustainable and net-zero carbon biorefineries.


Subject(s)
Food , Refuse Disposal , Biofuels , Biopolymers , Carbohydrates , Carbon , Lipids
5.
Microbiol Spectr ; 10(1): e0269721, 2022 02 23.
Article in English | MEDLINE | ID: mdl-35080440

ABSTRACT

Lytic polysaccharide monooxygenases (LPMOs) mediate oxidative degradation of plant polysaccharides. The genes encoding LPMOs are most commonly arranged with one catalytic domain, while a few are found tethered to additional noncatalytic units, i.e., cellulase linker and carbohydrate-binding module (CBM). The presence of CBM is known to facilitate catalysis by directing the enzymes toward cellulosic polymer, while the role of linkers is poorly understood. Based on limited experimental evidence, linkers are believed to serve merely as flexible spacers between the structured domains. Thus, this study aims to unravel the role of the linker regions present in LPMO sequences. For this, we analyzed the genome of Botrytis cinerea and found 9 genes encoding cellulose lytic monooxygenases (AA9 family), of which BcAA9C was overexpressed in cellulose-inducible conditions. We designed variants of flLPMO (full-length enzyme) with truncation of either linker or CBM to examine the role of linker in activity, binding, and thermal stability of the associated monooxygenase. Biochemical assays predicted that the deletion of linker does not impact the potential of flLPMO for catalyzing the oxidation of Amplex Red, but that it does have a major influence on the capability of flLPMO to degrade recalcitrant polysaccharide substrate. Langmuir isotherm and SEM analysis demonstrated that linker domain aids in polysaccharide binding during flLPMO-mediated deconstruction of plant cell wall. Interestingly, linker domain was also found to contribute toward the thermostability of flLPMO. Overall, our study reveals that linker is not merely a spacer, but plays a key role in LPMO-mediated biomass fibrillation; these findings are broadly applicable to other polysaccharide-degrading enzymes. IMPORTANCE The polysaccharide-disintegrating carbohydrate-active enzymes (CAZymes) are often found with multimodular architecture, where the catalytic domain is connected to an accessory CBM domain with the help of a flexible linker region. So far, the linker has been understood merely as a flexible spacer between the two domains. Therefore, the current study is designed to determine the role of linker in polysaccharide fibrillation. To conceive this study, we have selected LPMO as a model enzyme, as it is not only an industrially relevant enzyme but it also harbors a catalytic domain, linker region, and CBM domain. The present study highlighted the crucial and indispensable role of the linker region in mediating polysaccharide disintegration. Considering its role in binding, thermostability, and activity toward polysaccharide substrate, we propose linker as a potential candidate for future CAZyme engineering.


Subject(s)
Botrytis/enzymology , Fungal Proteins/chemistry , Fungal Proteins/metabolism , Mixed Function Oxygenases/chemistry , Mixed Function Oxygenases/metabolism , Botrytis/chemistry , Botrytis/genetics , Cellulose/metabolism , Enzyme Stability , Fungal Proteins/genetics , Mixed Function Oxygenases/genetics , Multigene Family , Polysaccharides/metabolism , Protein Binding , Protein Domains
6.
J Multidiscip Healthc ; 15: 125-136, 2022.
Article in English | MEDLINE | ID: mdl-35082498

ABSTRACT

In the category of rare inherited genetic disorders, phenylketonuria is a prominent example. Here, the defective phenylalanine hydroxylase enzyme fails to catalyze conversion of phenylalanine to tyrosine. This leads to not only excess deposition of phenylalanine leading to phenylalanine toxicity but also precludes the production of important glutamatergic and cholinergic neurotransmitters, leading to epileptic disorders, microcephaly, low intelligence quotient etc. For long, specialized food products are considered as preferred solution to prevent disease outcome. Different medical diets are developed for managing phenylketonuria includes amino acid mixtures, protein hydrolysates, cofactor-based therapy, large neutral amino acids and glycomacropeptides. However, despite the advent of alternate forms of diet products, the central form of treatment has still been free amino acid mixture. The formulated diet is by and large expensive and in-depth evaluation of several factors which contribute to the expense of medicated diet is requisite to create effective yet affordable avenues for management of disease. For this, we have discussed the role of various factors involved in increasing price of medicated diet and presented possible solutions to it. We have also extensively reviewed prevalence of disease, commercial diet for PKU patients, and their associated limitations. Overall, this is the first attempt to present a holistic view of balance between the overall impact of diet associated therapy and weighing it against the associated finances incurred.

7.
Environ Microbiol ; 24(6): 2817-2836, 2022 06.
Article in English | MEDLINE | ID: mdl-34435423

ABSTRACT

Plant growth promotion by microbes is a cumulative phenomenon involving multiple traits, many of which are not explored yet. Hence, to unravel microbial mechanisms underlying growth promotion, we have analysed the genomes of two potential growth-promoting microbes, viz., Pseudomonas sp. CK-NBRI-02 (P2) and Bacillus marisflavi CK-NBRI-03 (P3) for the presence of plant-beneficial traits. Besides known traits, we found that microbes differ in their ability to metabolize methylglyoxal (MG), a ubiquitous cytotoxin regarded as general consequence of stress in plants. P2 exhibited greater tolerance to MG and possessed better ability to sustain plant growth under dicarbonyl stress. However, under salinity, only P3 showed a dose-dependent induction in MG detoxification activity in accordance with concomitant increase in MG levels, contributing to enhanced salt tolerance. Furthermore, salt-stressed transcriptomes of both the strains showed differences with respect to MG, ion and osmolyte homeostasis, with P3 being more responsive to stress. Importantly, application of either strain altered MG levels and subsequently MG detoxification machinery in Arabidopsis, probably to strengthen plant defence response and growth. We therefore, suggest a crucial role of microbial MG resistance in plant growth promotion and that it should be considered as a beneficial trait while screening microbes for stress mitigation in plants.


Subject(s)
Arabidopsis , Pyruvaldehyde , Arabidopsis/genetics , Plants , Salt Stress , Salt Tolerance , Stress, Physiological/physiology
8.
Microbiol Resour Announc ; 9(7)2020 Feb 13.
Article in English | MEDLINE | ID: mdl-32054702

ABSTRACT

Here, we report the 4.34-Mb draft genome assembly of Bacillus marisflavi CK-NBRI-03 (or P3), a Gram-positive bacterium, with an average G+C content of 48.66%. P3 was isolated from agricultural soil from the Badaun (midwestern plain zone) region of Uttar Pradesh, India.

9.
Microbiol Resour Announc ; 8(43)2019 Oct 24.
Article in English | MEDLINE | ID: mdl-31649082

ABSTRACT

Pseudomonas sp. strain CK-NBRI-02 is a potential plant growth-promoting Gram-negative rhizobacterium isolated from the rhizosphere of maize plants growing in fields in Srinagar, Jammu, and Kashmir, India. Here, we report a 5.25-Mb draft assembly of the genome sequence of Pseudomonas sp. strain CK-NBRI-02 with an average G+C content of 62.47%.

10.
Int J Nanomedicine ; 14: 10023-10033, 2019.
Article in English | MEDLINE | ID: mdl-31908457

ABSTRACT

PURPOSE: The objective of this research was to generate a tool for the first-line detection of fungal infection in plants. Chitin is one of the unique fungal cell wall polysaccharide which is naturally deacetylated to chitosan upon infection. It is said to be involved in the fungal cell wall modulation and plant-pathogen communication. Therefore, detection of chitosan could be potentially helpful in the detection of fungal contamination. METHODS: Five different phytopathogenic fungi strains were used for the study. Polyclonal sera were raised in the mice against Trimethylchitosan nanoparticles to generate an enhanced humoral immune response and generate a rich and heterogeneous repertoire of antibodies. The binding affinity of the sera with fungal cell wall was analyzed by ELISA, Langmuir isotherm, confocal microscopy and ITC (Isothermal Calorimetry). RESULTS: The raised polyclonal sera could detect chitosan in the fungal cell wall, as analyzed with the different techniques. However, the detection specificity varied among the strains in proportion to the chitin content of their cell wall. Fusarium oxysporum was detected with the highest affinity while Trichoderma reesei was detected with the least affinity by ELISA. Adsorption isotherm, as well as ITC, revealed the specific and high binding capacity. Confocal microscopy also confirmed the detection of all strains used in the study. CONCLUSION: This novel technique employing TMC nanoparticulate system could be potentially used as a source to raise sera against chitosan in an inexpensive and less laborious manner. Rapid detection of fungal contamination by the polyclonal antibodies could help in devising a quick solution. The polyclonal sera are expected to detect a span of epitopes and provide precise detection. The detection system could be advanced for future applications such as food quality control, crop protection, and human fungal infection detection and treatment.


Subject(s)
Chitosan/immunology , Fungi/cytology , Nanoparticles , Plant Diseases/microbiology , Animals , Cell Wall/microbiology , Chitosan/chemistry , Fungi/immunology , Fungi/pathogenicity , Fusarium/cytology , Fusarium/immunology , Fusarium/pathogenicity , Immune Sera/metabolism , Immunity, Humoral , Mice
11.
J Biol Chem ; 2017 Aug 21.
Article in English | MEDLINE | ID: mdl-28827309

ABSTRACT

This article has been withdrawn by the authors. Figs 4B and 6C were inappropriately presented.

12.
Int J Biochem Cell Biol ; 89: 71-84, 2017 08.
Article in English | MEDLINE | ID: mdl-28602714

ABSTRACT

BACKGROUND: Bacillus anthracis (BA) is a major bioterrorism concern which has evolved complex regulatory mechanisms for its virulence factors. Secreted proteases play an imperative role in the pathogenesis of BA, however their regulation remains elusive. Two component systems (TCS) are often employed by bacteria to sense and adapt to the environmental perturbations. In several pathogens, TCS are commonly associated with the regulation of virulence factors including proteases. The genome of BA encodes 41 TCS pairs, however, the role of any TCS in regulation of its proteases is not known. PRINCIPAL FINDINGS: The study established BAS2108-2109 as a prototypical TCS where BAS2108 functions as a histidine kinase and BAS2109 as the response regulator. The expression of BAS2109 was found to be elevated under host simulated conditions and in pellicle forming cells. Electrophoretic mobility shift assay (EMSA) and lacZ reporter assay revealed positive autoregulation of the BAS2108-2109 operon by BAS2109. Collective analysis of ANS assay and EMSA demonstrated Lys167, Thr179 and Thr182 residues are crucial for the DNA binding activity of BAS2109. EMSA analysis further highlighted BAS2109 as the transcriptional regulator for different genes of BA, particularly proteases. Upregulation of proteases in BA overexpressing BAS2109 further strengthen its role in protease regulation. SIGNIFICANCE: This is the first report to identify a TCS pair for its role in the regulation of proteases of BA. Importance of proteases in the pathogenesis of BA is well documented, therefore, studying the regulatory networks governing their expression will help in identification of new drug targets.


Subject(s)
Bacillus anthracis/metabolism , Bacterial Proteins/metabolism , Amino Acid Sequence , Bacillus anthracis/enzymology , Bacillus anthracis/genetics , Bacillus anthracis/growth & development , Bacterial Proteins/chemistry , Bacterial Proteins/genetics , Base Sequence , DNA, Bacterial/metabolism , Gene Expression Regulation, Bacterial , Models, Molecular , Peptide Hydrolases/metabolism , Phosphorylation , Promoter Regions, Genetic/genetics , Protein Domains
13.
Sci Rep ; 7(1): 3700, 2017 06 16.
Article in English | MEDLINE | ID: mdl-28623337

ABSTRACT

Cellulolytic enzymes capable of hydrolyzing plant biomass are secreted by microbial cells specifically in response to the carbon substrate present in the environment. These enzymes consist of a catalytic domain, generally appended to one or more non-catalytic Carbohydrate Binding Module (CBM), which enhances their activity towards recalcitrant biomass. In the present study, the genome of a cellulolytic microbe Paenibacillus polymyxa A18 was annotated for the presence of CBMs and analyzed their expression in response to the plant biomass and model polysaccharides Avicel, CMC and xylan using quantitative PCR. A gene that encodes X2-CBM3 was found to be maximally induced in response to the biomass and crystalline substrate Avicel. Association of X2-CBM3 with xyloglucanase and endoglucanase led to up to 4.6-fold increase in activity towards insoluble substrates. In the substrate binding study, module X2 showed a higher affinity towards biomass and phosphoric acid swollen cellulose, whereas CBM3 showed a higher affinity towards Avicel. Further structural modeling of X2 also indicated its potential role in substrate binding. Our findings highlighted the role of module X2 along with CBM3 in assisting the enzyme catalysis of agricultural residue and paved the way to engineer glycoside hydrolases for superior activity.


Subject(s)
Biomass , Carbohydrate Metabolism , Carbohydrates/chemistry , Glycoside Hydrolases/chemistry , Glycoside Hydrolases/metabolism , Plants/metabolism , Catalysis , Glycosides/metabolism , Hydrolysis , Models, Molecular , Molecular Conformation , Plants/chemistry , Protein Binding , Solubility , Structure-Activity Relationship
14.
Biotechnol Biofuels ; 8: 159, 2015.
Article in English | MEDLINE | ID: mdl-26413158

ABSTRACT

BACKGROUND: Paenibacillus polymyxa is a facultative anaerobe known for production of hydrolytic enzymes and various important biofuel molecules. Despite its wide industrial use and the availability of its genome sequence, very little is known about metabolic pathways operative in the Paenibacillus system. Here, we report metabolic insights of an insect gut symbiont, Paenibacillus polymyxa ICGEB2008, and reveal pathways playing an important role in the production of 2,3-butanediol and ethanol. RESULT: We developed a metabolic network model of P. polymyxa ICGEB2008 with 133 metabolites and 158 reactions. Flux balance analysis was employed to investigate the importance of redox balance in ICGEB2008. This led to the detection of the Bifid shunt, a pathway previously not described in Paenibacillus, which can uncouple the production of ATP from the generation of reducing equivalents. Using a combined experimental and modeling approach, we further studied pathways involved in 2,3-butanediol and ethanol production and also demonstrated the production of hydrogen by the organism. We could further show that the nitrogen source is critical for metabolite production by Paenibacillus, and correctly quantify the influence on the by-product metabolite profile of ICGEB2008. Both simulations and experiments showed that metabolic flux is diverted from ethanol to acetate production when an oxidized nitrogen source is utilized. CONCLUSION: We have created a predictive model of the central carbon metabolism of P. polymyxa ICGEB2008 and could show the presence of the Bifid shunt and explain its role in ICGEB2008. An in-depth study has been performed to understand the metabolic pathways involved in ethanol, 2,3-butanediol and hydrogen production, which can be utilized as a basis for further metabolic engineering efforts to improve the efficiency of biofuel production by this P. polymyxa strain.

15.
J Ind Microbiol Biotechnol ; 42(1): 21-8, 2015 Jan.
Article in English | MEDLINE | ID: mdl-25424694

ABSTRACT

We report here the production of pure (R,R)-2,3-butanediol (2,3-BDO) isomer by the non-pathogenic Paenibacillus polymyxa ICGEB2008 using lignocellulosic hydrolysate as substrate. Experimental design based on Plackett-Burman resulted in identification of Mn and K as most crucial salt elements along with the yeast extract for 2,3-BDO production. Further experiments using Box-Behnken design indicated that both KCl and yeast extract together had major impact on 2,3-BDO production. Optimized medium resulted in 2,3-BDO production with 2.3-fold higher maximum volumetric productivity (2.01 g/L/h) and similar yield (0.33 g/g sugar) as compared to rich yeast extract-peptone-dextrose medium in the bioreactor studies. Considering that the balance substrate was channeled towards ethanol, carbon recovery was close to theoretical yield between the two solvents, i.e., 2,3-BDO and ethanol. Biomass hydrolysate and corn-steep liquor was used further to produce 2,3-BDO without impacting its yield. In addition, 2,3-BDO was also produced via simultaneous saccharification and fermentation, signifying robustness of the strain.


Subject(s)
Butylene Glycols/metabolism , Paenibacillus/metabolism , Biomass , Bioreactors/microbiology , Cellulose/chemistry , Culture Media/chemistry , Ethanol/metabolism , Fermentation , Glucose/metabolism
16.
Sci Rep ; 3: 2558, 2013.
Article in English | MEDLINE | ID: mdl-23990056

ABSTRACT

Arthropods living on plants are able to digest plant biomass with the help of microbial flora in their guts. This study considered three arthropods from different niches - termites, pill-bugs and yellow stem-borers - and screened their guts for cellulase producing microbes. Among 42 unique cellulase-producing strains, 50% belonged to Bacillaceae, 26% belonged to Enterobacteriaceae, 17% belonged to Microbacteriaceae, 5% belonged to Paenibacillaceae and 2% belonged to Promicromonosporaceae. The distribution of microbial families in the three arthropod guts reflected differences in their food consumption habits. Most of the carboxymethylcellulase positive strains also hydrolysed other amorphous substrates such as xylan, locust bean gum and ß-D-glucan. Two strains, A11 and A21, demonstrated significant activity towards Avicel and p-nitrophenyl-ß-D-cellobiose, indicating that they express cellobiohydrolase. These results provide insight into the co-existence of symbionts in the guts of arthropods and their possible exploitation for the production of fuels and chemicals derived from plant biomass.


Subject(s)
Arthropods/microbiology , Arthropods/physiology , Bacterial Physiological Phenomena , Cellulose/metabolism , Gastrointestinal Tract/metabolism , Gastrointestinal Tract/microbiology , Microbiota/physiology , Animals
17.
Genome Announc ; 1(1)2013 Jan.
Article in English | MEDLINE | ID: mdl-23405362

ABSTRACT

Paenibacillus sp. strain ICGEB2008 (MTCC 5639) is a Gram-positive cellulolytic bacterium, isolated from the gut of Helicoverpa armigera. Here, we report the draft genome sequence of Paenibacillus sp. ICGEB2008. The annotation of the ~5.7-Mb sequence indicated a cluster of genes related to the glycosyl hydrolase family and the butanediol biosynthesis pathway.

18.
Protein Expr Purif ; 88(1): 20-5, 2013 Mar.
Article in English | MEDLINE | ID: mdl-23201279

ABSTRACT

Escherichia coli is considered one of the most appropriate hosts for the production of recombinant proteins. However, its usage is undermined by its inability to efficiently secrete proteins into the extracellular medium. We selected two cellulolytic enzymes with potential biofuel applications, ß-1,4-endoglucanase (Endo5A) and ß-1,4-glucosidase (Gluc1C), and determined the genetic and environmental parameters for their optimal secretion into culture medium. Endo5A and Gluc1C were fused with the hyperosmotically inducible periplasmic protein of E. coli, OsmY, and their activities in the extracellular, periplasmic and cytoplasmic fractions were monitored. Most of the endoglucanase activity (0.15 µmol min(-1) ml(-1)) and ß-glucosidase activity (2.2 µmol min(-1) ml(-1)) in the extracellular fraction was observed at 16 h post-induction. To reduce the overall cost, we expressed Endo5A and Gluc1C together either via a synthetic operon or through a bifunctional chimeric protein. Both systems efficiently secreted the enzymes, as evident from the functional activities and protein profiles on SDS-PAGE gels. The enzymes secreted via a synthetic operon showed higher activities (0.14 µmol min(-1) ml(-1) for endoglucanase and 2.4 µmol min(-1) ml(-1) for ß-glucosidase) as compared to the activities shown by the- bifunctional chimera (0.075 µmol min(-1) ml(-1) for endoglucanase and 2.0 µmol min(-1)ml(-1) for ß-glucosidase). The cellulase secretion system developed here has potential for use in the production of lignocellulosic biofuels.


Subject(s)
Cellulase/metabolism , Escherichia coli/enzymology , Glucosidases/metabolism , Recombinant Fusion Proteins/biosynthesis , Bioreactors , Cellulase/biosynthesis , Cellulase/genetics , Cellulase/isolation & purification , Cytoplasm/enzymology , Escherichia coli/genetics , Escherichia coli/metabolism , Escherichia coli Proteins/biosynthesis , Escherichia coli Proteins/genetics , Extracellular Matrix/enzymology , Glucosidases/biosynthesis , Glucosidases/genetics , Glucosidases/isolation & purification , Periplasm/enzymology , Periplasmic Binding Proteins/biosynthesis , Periplasmic Binding Proteins/genetics , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/isolation & purification , Recombinant Fusion Proteins/metabolism
19.
Lung India ; 29(4): 313-8, 2012 Oct.
Article in English | MEDLINE | ID: mdl-23243342

ABSTRACT

BACKGROUND: Pulmonary tuberculosis (TB) is caused by Mycobacterium tuberculosis (M. tb). In lungs, alveolar macrophages and type II alveolar epithelial cells serve as a replicative niche for this pathogen. Secretory proteins released by actively replicating tubercle bacilli are known to interact with host cells at the initial stages of infection. To understand the role of these cells in TB pathogenesis, it is important to identify the mycobacterial components involved in interaction with alveolar epithelial cells. MATERIALS AND METHODS: We fractionated the whole secretory proteome of M. tb H(37)Rv into 10 narrow molecular mass fractions (A1-A10; <20 kDa to >90 kDa) that were studied for their binding potential with A549; type II alveolar epithelial cell line. We also studied the consequences of this interaction in terms of change in epithelial cell viability by MTT assay and cytokine release by ELISA. RESULTS: Our results show that several mycobacterial proteins bind and confer cytolysis in epithelial cells. Amongst all the fractions, proteins ranging from 35-45 kDa (A5) exhibited highest binding to A549 cells with a consequence of cytolysis of these cells. This fraction (A5) also led to release of various cytokines important in anti-mycobacterial immunity. CONCLUSION: Fraction A5 (35-45 kDa) of mycobacterial secretory proteome play an important role in mediating M. tb interaction with type II alveolar epithelial cells with the consequences detrimental for the TB pathogenesis. Further studies are being carried out to identify the candidate proteins from this region.

20.
Appl Environ Microbiol ; 78(20): 7447-54, 2012 Oct.
Article in English | MEDLINE | ID: mdl-22904050

ABSTRACT

Identification and design of new cellulolytic enzymes with higher catalytic efficiency are a key factor in reducing the production cost of lignocellulosic bioalcohol. We report here identification of a novel ß-glucosidase (Gluc1C) from Paenibacillus sp. strain MTCC 5639 and construction of bifunctional chimeric proteins based on Gluc1C and Endo5A, a ß-1,4-endoglucanase isolated from MTCC 5639 earlier. The 448-amino-acid-long Gluc1C contained a GH superfamily 1 domain and hydrolyzed cellodextrin up to a five-sugar chain length, with highest efficiency toward cellobiose. Addition of Gluc1C improved the ability of Endo5A to release the reducing sugars from carboxymethyl cellulose. We therefore constructed six bifunctional chimeric proteins based on Endo5A and Gluc1C varying in the positions and sizes of linkers. One of the constructs, EG5, consisting of Endo5A-(G(4)S)(3)-Gluc1C, demonstrated 3.2- and 2-fold higher molar specific activities for ß-glucosidase and endoglucanase, respectively, than Gluc1C and Endo5A alone. EG5 also showed 2-fold higher catalytic efficiency than individual recombinant enzymes. The thermal denaturation monitored by circular dichroism (CD) spectroscopy demonstrated that the fusion of Gluc1C with Endo5A resulted in increased thermostability of both domains by 5°C and 9°C, respectively. Comparative hydrolysis experiments done on alkali-treated rice straw and CMC indicated 2-fold higher release of product by EG5 than that by the physical mixture of Endo5A and Gluc1C, providing a rationale for channeling of intermediates. Addition of EG5 to a commercial enzyme preparation significantly enhanced release of reducing sugars from pretreated biomass, indicating its commercial applicability.


Subject(s)
Carboxymethylcellulose Sodium/metabolism , Cellulase/genetics , Cellulase/metabolism , Glucan 1,4-beta-Glucosidase/genetics , Glucan 1,4-beta-Glucosidase/metabolism , Paenibacillus/enzymology , Circular Dichroism , Enzyme Stability , Hydrolysis , Oryza/metabolism , Paenibacillus/genetics , Protein Conformation/radiation effects , Protein Stability , Recombinant Fusion Proteins/chemistry , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/metabolism , Temperature
SELECTION OF CITATIONS
SEARCH DETAIL
...