Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Neuroscience ; 2024 Jul 06.
Article in English | MEDLINE | ID: mdl-38977069

ABSTRACT

Epidemiological data show that males are more often and/or more severely affected by symptoms of prefrontal cortical dysfunction in schizophrenia, Parkinson's disease and other disorders in which dopamine circuits associated with the prefrontal cortex are dysregulated. This review focuses on research showing that these dopamine circuits are powerfully regulated by androgens. It begins with a brief overview of the sex differences that distinguish prefrontal function in health and prefrontal dysfunction or decline in aging and/or neuropsychiatric disease. This review article then spotlights data from human subjects and animal models that specifically identify androgens as potent modulators of prefrontal cortical operations and of closely related, functionally critical measures of prefrontal dopamine level or tone. Candidate mechanisms by which androgens dynamically control mesoprefrontal dopamine systems and impact prefrontal states of hypo- and hyper-dopaminergia in aging and disease are then considered. This is followed by discussion of a working model that identifies a key locus for androgen modulation of mesoprefrontal dopamine systems as residing within the prefrontal cortex itself. The last sections of this review critically consider the ways in which the organization and regulation of mesoprefrontal dopamine circuits differ in the adult male and female brain, and highlights gaps where more research is needed.

2.
Angiogenesis ; 23(4): 581-597, 2020 11.
Article in English | MEDLINE | ID: mdl-32440964

ABSTRACT

The liver is a common host organ for cancer, either through lesions that arise in liver epithelial cells [e.g., hepatocellular carcinoma (HCC)] or as a site of metastasis by tumors arising in other organs (e.g., colorectal cancer). However, the changes that occur in liver stromal cells in response to cancer have not been fully characterized, nor has it been determined whether the different sources of liver cancer induce distinct stromal changes. Here, we performed single-cell profiling of liver stromal cells from mouse models of induced spontaneous liver cancer or implanted colorectal liver metastases, with a focus on tumor endothelial cells (ECs). While ECs in liver tissue adjacent to cancerous lesions (so-called adjacent normal) corresponded to liver zonation phenotypes, their transcriptomes were also clearly altered by the presence of a tumor. In comparison, tumor EC transcriptomes show stronger similarities to venous than sinusoidal ECs. Further, tumor ECs, independent of tumor origin, formed distinct clusters displaying conserved "tip-like" or "stalk-like" characteristics, similar to ECs from subcutaneous tumors. However, they also carried liver-specific signatures found in normal liver ECs, suggesting an influence of the host organ on tumor ECs. Our results document gene expression signatures in ECs in liver cancer and show that the host organ, and not the site of tumor origin (liver versus colorectal), is a primary determinant of EC phenotype. In addition, primarily in tumors, we further defined a cluster of chimeric cells that expressed both myeloid and endothelial cell markers and might play a role in tumor angiogenesis.


Subject(s)
Chimerism , Endothelial Cells/pathology , Liver Neoplasms/genetics , Single-Cell Analysis , Transcriptome/genetics , Animals , Cell Line, Tumor , Humans , Hydrodynamics , Liver/metabolism , Liver/pathology , Liver Neoplasms/immunology , Mice, Inbred C57BL , Myeloid Cells/metabolism
3.
J Neuroinflammation ; 16(1): 93, 2019 Apr 30.
Article in English | MEDLINE | ID: mdl-31039819

ABSTRACT

BACKGROUND: The anti-inflammatory cytokine interleukin-10 (IL-10) has been explored previously as a treatment method for spinal cord injury (SCI) due to its ability to attenuate pro-inflammatory cytokines and reduce apoptosis. Primary limitations when using systemic injections of IL-10 are that it is rapidly cleared from the injury site and that it does not cross the blood-spinal cord barrier. OBJECTIVE: Here, mineral-coated microparticles (MCMs) were used to obtain a local sustained delivery of IL-10 directly into the injury site after SCI. METHODS: Female Sprague-Dawley rats were contused at T10 and treated with either an intraperitoneal injection of IL-10, an intramedullary injection of IL-10, or MCMs bound with IL-10 (MCMs+IL-10). After treatment, cytokine levels were measured in the spinal cord, functional testing and electrophysiology were performed, axon tracers were injected into the brainstem and motor cortex, macrophage levels were counted using flow cytometry and immunohistochemistry, and lesion size was measured. RESULTS: When treated with MCMs+IL-10, IL-10 was significantly elevated in the injury site and inflammatory cytokines were significantly suppressed, prompting significantly less cells expressing antigens characteristic of inflammatory macrophages and significantly more cells expressing antigens characteristic of earlier stage anti-inflammatory macrophages. Significantly more axons were preserved within the rubrospinal and reticulospinal tracts through the injury site when treated with MCMs+IL-10; however, there was no significant difference in corticospinal tract axons preserved, regardless of treatment group. The rats treated with MCMs+IL-10 were the only group with a significantly higher functional score compared to injured controls 28 days post-contusion. CONCLUSION: These data demonstrate that MCMs can effectively deliver biologically active IL-10 for an extended period of time altering macrophage phenotype and aiding in functional recovery after SCI.


Subject(s)
Inflammation/pathology , Interleukin-10/administration & dosage , Neuroprotective Agents/administration & dosage , Spinal Cord Injuries/pathology , Animals , Dosage Forms , Female , Random Allocation , Rats , Rats, Sprague-Dawley , Recovery of Function/drug effects
4.
Cancer Res ; 78(9): 2370-2382, 2018 05 01.
Article in English | MEDLINE | ID: mdl-29449267

ABSTRACT

Angiogenesis involves dynamic interactions between specialized endothelial tip and stalk cells that are believed to be regulated in part by VEGF and Dll4-Notch signaling. However, our understanding of this process is hampered by limited knowledge of the heterogeneity of endothelial cells and the role of different signaling pathways in specifying endothelial phenotypes. Here, we characterized by single-cell transcriptomics the heterogeneity of mouse endothelial cells and other stromal cells during active angiogenesis in xenograft tumors as well as from adult normal heart, following pharmacologic inhibition of VEGF and Dll4-Notch signaling. We classified tumor endothelial cells into three subpopulations that appeared to correspond with tip-like, transition, and stalk-like cells. Previously identified markers for tip and stalk cells were confirmed and several novel ones discovered. Blockade of VEGF rapidly inhibited cell-cycle genes and strongly reduced the proportion of endothelial tip cells in tumors. In contrast, blockade of Dll4 promoted endothelial proliferation as well as tip cell markers; blockade of both pathways inhibited endothelial proliferation but preserved some tip cells. We also phenotypically classified other tumor stromal cells and found that tumor-associated fibroblasts responded to antiangiogenic drug treatments by upregulating hypoxia-associated genes and producing secreted factors involved in angiogenesis. Overall, our findings better define the heterogeneity of tumor endothelial and other stromal cells and reveal the roles of VEGF and Dll4-Notch in specifying tumor endothelial phenotype, highlighting the response of stromal cells to antiangiogenic therapies.Significance: These findings provide a framework for defining subpopulations of endothelial cells and tumor-associated fibroblasts and their rapid changes in gene expression following antiangiogenic treatment. Cancer Res; 78(9); 2370-82. ©2018 AACR.


Subject(s)
Endothelial Cells/metabolism , Neoplasms/genetics , Neoplasms/pathology , Neovascularization, Pathologic/genetics , Transcriptome , Animals , Antineoplastic Agents/pharmacology , Biomarkers , Cancer-Associated Fibroblasts/metabolism , Cancer-Associated Fibroblasts/pathology , Cell Line, Tumor , Disease Models, Animal , Endothelial Cells/pathology , Gene Expression Profiling , Humans , Immunohistochemistry , Male , Mice , Neoplasms/metabolism , Neovascularization, Pathologic/metabolism , Single-Cell Analysis , Stromal Cells/metabolism , Xenograft Model Antitumor Assays
5.
Cancer Res ; 76(8): 2327-39, 2016 04 15.
Article in English | MEDLINE | ID: mdl-26921327

ABSTRACT

Anti-VEGF therapies benefit several cancer types, but drug resistance that limits therapeutic response can emerge. We generated cell lines from anti-VEGF-resistant tumor xenografts to investigate the mechanisms by which resistance develops. Of all tumor cells tested, only A431 (A431-V) epidermoid carcinoma cells developed partial resistance to the VEGF inhibitor aflibercept. Compared with the parental tumors, A431-V tumors secreted greater amounts of IL6 and exhibited higher levels of phospho-STAT3. Notably, combined blockade of IL6 receptor (IL6R) and VEGF resulted in enhanced activity against A431-V tumors. Similarly, inhibition of IL6R enhanced the antitumor effects of aflibercept in DU145 prostate tumor cells that displays high endogenous IL6R activity. In addition, post hoc stratification of data obtained from a clinical trial investigating aflibercept efficacy in ovarian cancer showed poorer survival in patients with high levels of circulating IL6. These results suggest that the activation of the IL6/STAT3 pathway in tumor cells may provide a survival advantage during anti-VEGF treatment, suggesting its utility as a source of response biomarkers and as a therapeutic target to heighten efficacious results. Cancer Res; 76(8); 2327-39. ©2016 AACR.


Subject(s)
Interleukin-6/metabolism , STAT3 Transcription Factor/metabolism , Signal Transduction , Vascular Endothelial Growth Factor A/antagonists & inhibitors , Animals , Cell Line, Tumor , Drug Resistance, Neoplasm , Heterografts , Humans , Interleukin-6/antagonists & inhibitors , Mice , Receptors, Vascular Endothelial Growth Factor , Recombinant Fusion Proteins/pharmacology
6.
J Am Chem Soc ; 135(15): 5685-92, 2013 Apr 17.
Article in English | MEDLINE | ID: mdl-23484800

ABSTRACT

To exploit the full potential of multicomponent wide-bandgap oxides, an in-depth understanding of the complex defect chemistry and of the role played by the constituent oxides is required. In this work, thorough theoretical and experimental investigations are combined in order to explain the carrier generation and transport in crystalline InGaZnO4. Using first-principles density functional approach, we calculate the formation energies and transition levels of possible acceptor and donor point defects as well as the implied defect complexes in InGaZnO4 and determine the equilibrium defect and electron densities as a function of growth temperature and oxygen partial pressure. An excellent agreement of the theoretical results with our Brouwer analysis of the bulk electrical measurements for InGaZnO4 establishes the Ga antisite defect, GaZn, as the major electron donor in InGaZnO4. Moreover, we show that the oxygen vacancies, long believed to be the carrier source in this oxide, are scarce. The proposed carrier generation mechanism also explains the observed intriguing behavior of the conductivity in In-rich vs Ga-rich InGaZnO4.

7.
Cancer Res ; 73(1): 108-18, 2013 Jan 01.
Article in English | MEDLINE | ID: mdl-23149917

ABSTRACT

The angiopoietins Ang1 (ANGPT1) and Ang2 (ANGPT2) are secreted factors that bind to the endothelial cell-specific receptor tyrosine kinase Tie2 (TEK) and regulate angiogenesis. Ang1 activates Tie2 to promote blood vessel maturation and stabilization. In contrast, Ang2, which is highly expressed by tumor endothelial cells, is thought to inhibit Tie2 activity and destabilize blood vessels, thereby facilitating VEGF-dependent vessel growth. Here, we show that the inhibition of tumor xenograft growth caused by an Ang2-specific antibody (REGN910) is reversed by systemic administration of the Tie2 agonist Ang1. These results indicate that Ang2 blockade inhibits tumor growth by decreasing Tie2 activity, showing that Ang2 is a Tie2 activator. REGN910 treatment of tumors resulted in increased expression of genes that are repressed by Tie2 activation, providing further evidence that REGN910 inhibits Tie2 signaling. Combination treatment with REGN910 plus the VEGF blocker aflibercept reduced tumor vascularity and tumor perfusion more dramatically than either single agent, resulting in more extensive tumor cell death and more potent inhibition of tumor growth. Challenging the prevailing model of Ang2 as a destabilizing factor, our findings indicate that Ang2 plays a protective role in tumor endothelial cells by activating Tie2, thereby limiting the antivascular effects of VEGF inhibition. Thus, blockade of Ang2 might enhance the clinical benefits currently provided by anti-VEGF agents. .


Subject(s)
Angiopoietin-2/metabolism , Gene Expression Regulation, Neoplastic/physiology , Neoplasms, Experimental/metabolism , Receptor, TIE-2/agonists , Receptor, TIE-2/metabolism , Vascular Endothelial Growth Factor A/antagonists & inhibitors , Animals , Disease Models, Animal , Humans , Mice , Neoplasms, Experimental/blood supply , Neovascularization, Pathologic/metabolism , Signal Transduction/physiology , Transplantation, Heterologous , Vascular Endothelial Growth Factor A/metabolism
8.
Angiogenesis ; 16(2): 429-41, 2013 Apr.
Article in English | MEDLINE | ID: mdl-23238831

ABSTRACT

Vascular endothelial growth factor (VEGF) is a key upstream mediator of tumor angiogenesis, and blockade of VEGF can inhibit tumor angiogenesis and decrease tumor growth. However, not all tumors respond well to anti-VEGF therapy. Despite much effort, identification of early response biomarkers that correlate with long-term efficacy of anti-VEGF therapy has been difficult. These difficulties arise in part because the functional effects of VEGF inhibition on tumor vessels are still unclear. We therefore assessed rapid molecular, morphologic and functional vascular responses following treatment with aflibercept (also known as VEGF Trap or ziv-aflibercept in the United States) in preclinical tumor models with a range of responses to anti-VEGF therapy, including Colo205 human colorectal carcinoma (highly sensitive), C6 rat glioblastoma (moderately sensitive), and HT1080 human fibrosarcoma (resistant), and correlated these changes to long-term tumor growth inhibition. We found that an overall decrease in tumor vessel perfusion, assessed by dynamic contrast-enhanced ultrasound (DCE-US), and increases in tumor hypoxia correlated well with long-term tumor growth inhibition, whereas changes in vascular gene expression and microvessel density did not. Our findings support previous clinical studies showing that decreased tumor perfusion after anti-VEGF therapy (measured by DCE-US) correlated with response. Thus, measuring tumor perfusion changes shortly after treatment with VEGF inhibitors, or possibly other anti-angiogenic therapies, may be useful to predict treatment efficacy.


Subject(s)
Neoplasms/pathology , Vascular Endothelial Growth Factor A/antagonists & inhibitors , Animals , Base Sequence , Cell Line, Tumor , DNA Primers , Humans , Immunohistochemistry , Mice , Neoplasms/metabolism , Polymerase Chain Reaction
SELECTION OF CITATIONS
SEARCH DETAIL
...