Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Physiol Plant ; 175(1): e13870, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36724166

ABSTRACT

Sweet basil, Ocimum basilicum L., is an important culinary herb grown worldwide. Although basil is green, many landraces, breeding lines, and exotic cultivars have purple stems and flowers. This anthocyanin pigmentation is unacceptable in traditional Italian basil used for Pesto sauce production. In the current study, we aimed to resolve the genetics that underlines the different colors. We used the recently published sweet basil genome to map quantitative trait loci (QTL) for flower and stem color in a bi-parental F2 population. It was found that the pigmentation is governed by a single QTL, harboring an anthocyanidin synthase (ANS) gene (EC 1.14.20.4). Further analysis revealed that the basil genome harbors two homeologous ANS genes, each carrying a loss-of-function mutation. ObANS1 carries a single base pair insertion resulting in a frameshift, and ObANS2 carries a missense mutation within the active site. In the purple-flower parent, ANS1 is functional, and ANS2 carries a nonsense mutation. The functionality of the ObANS1 active allele was validated by complementation assay in an Arabidopsis ANS mutant. Moreover, we have restored the functionality of the missense-mutated ObANS2 using site-directed activation. We found that the non-functional alleles were expressed to similar levels as the functional allele, suggesting polyploids invest futile effort in expressing non-functional genes, offsetting their advantageous redundancy. This work demonstrated the usefulness of the genomics and genetics of basil to understand the basic mechanism of metabolic traits and raise fundamental questions in polyploid plant biology.


Subject(s)
Ocimum basilicum , Oxygenases/genetics , Phenotype , Mutation
2.
Plant Sci ; 321: 111316, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35696916

ABSTRACT

Fusarium wilt of basil is a disease of sweet basil (Ocimum basilicum L.) plants caused by the fungus Fusarium oxysporum f. sp. basilici (FOB). Although resistant cultivars were released > 20 years ago, the underlying mechanism and the genes controlling the resistance remain unknown. We used genetic mapping to elucidate FOB resistance in an F2 population derived from a cross between resistant and susceptible cultivars. We performed genotyping by sequencing of 173 offspring and aligning the data to the sweet basil reference genome. In total, 23,411 polymorphic sites were detected, and a single quantitative trait locus (QTL) for FOB resistance was found. The confidence interval was < 600 kbp, harboring only 60 genes, including a cluster of putative disease-resistance genes. Based on homology to a fusarium resistance protein from wild tomato, we also investigated a candidate resistance gene that encodes a transmembrane leucine-rich repeat - receptor-like kinase - ubiquitin-like protease (LRR-RLK-ULP). Sequence analysis of that gene in the susceptible parent vs. the resistant parent revealed multiple indels, including an insertion of 20 amino acids next to the transmembrane domain, which might alter its functionality. Our findings suggest that this LRR-RLK-ULP might be responsible for FOB resistance in sweet basil and demonstrate the usefulness of the recently sequenced basil genome for QTL mapping and gene mining.


Subject(s)
Fusarium , Ocimum basilicum , Chromosome Mapping , Disease Resistance/genetics , Fusarium/genetics , Ocimum basilicum/genetics , Ocimum basilicum/microbiology , Plant Diseases/genetics , Plant Diseases/microbiology
3.
DNA Res ; 27(5)2020 Dec 03.
Article in English | MEDLINE | ID: mdl-33340318

ABSTRACT

Sweet basil, Ocimum basilicum L., is a well-known culinary herb grown worldwide, but its uses go beyond the kitchen to traditional medicine, cosmetics and gardening. To date, the lack of an available reference genome has limited the utilization of advanced molecular breeding methods. We present a draft version of the sweet basil genome of the cultivar 'Perrie', a fresh-cut Genovese-type basil. Genome sequencing showed basil to be a tetraploid organism with a genome size of 2.13 Gbp, assembled in 12,212 scaffolds, with > 90% of the assembly being composed of 107 scaffolds. About 76% of the genome is composed of repetitive elements, with the majority being long-terminal repeats. We constructed and annotated 62,067 protein-coding genes and determined their expression in different plant tissues. We analysed the currently known phenylpropanoid volatiles biosynthesis genes. We demonstrated the necessity of the reference genome for a comprehensive understanding of this important pathway in the context of tetraploidy and gene redundancy. A complete reference genome is essential to overcome this redundancy and to avoid off-targeting when designing a CRISPR: Cas9-based genome editing research. This work bears promise for developing fast and accurate breeding tools to provide better cultivars for farmers and improved products for consumers.


Subject(s)
Biosynthetic Pathways , Genome, Plant , Ocimum basilicum/genetics , Sequence Analysis, DNA , Allyl Compounds/metabolism , Chromosome Mapping , DNA Shuffling , Eugenol/metabolism , Gene Editing , Ocimum basilicum/enzymology , Ocimum basilicum/metabolism , Phenols/metabolism , Phylogeny , Tetraploidy
4.
Plant Cell Environ ; 40(8): 1263-1280, 2017 Aug.
Article in English | MEDLINE | ID: mdl-28103403

ABSTRACT

Olive (Olea europaea L.) inflorescences, formed in lateral buds, flower in spring. However, there is some debate regarding time of flower induction and inflorescence initiation. Olive juvenility and seasonality of flowering were altered by overexpressing genes encoding flowering locus T (FT). OeFT1 and OeFT2 caused early flowering under short days when expressed in Arabidopsis. Expression of OeFT1/2 in olive leaves and OeFT2 in buds increased in winter, while initiation of inflorescences occurred i n late winter. Trees exposed to an artificial warm winter expressed low levels of OeFT1/2 in leaves and did not flower. Olive flower induction thus seems to be mediated by an increase in FT levels in response to cold winters. Olive flowering is dependent on additional internal factors. It was severely reduced in trees that carried a heavy fruit load the previous season (harvested in November) and in trees without fruit to which cold temperatures were artificially applied in summer. Expression analysis suggested that these internal factors work either by reducing the increase in OeFT1/2 expression or through putative flowering repressors such as TFL1. With expected warmer winters, future consumption of olive oil, as part of a healthy Mediterranean diet, should benefit from better understanding these factors.


Subject(s)
Cues , Environment , Flowers/genetics , Flowers/physiology , Genes, Plant , Olea/genetics , Olea/physiology , Plant Proteins/genetics , Arabidopsis/genetics , Biomarkers/metabolism , Flowers/ultrastructure , Fruit/physiology , Gene Expression Regulation, Plant , Inflorescence/growth & development , Inflorescence/ultrastructure , Meristem/ultrastructure , Olea/ultrastructure , Plant Proteins/metabolism , Plants, Genetically Modified , RNA, Messenger/genetics , RNA, Messenger/metabolism , Seasons , Temperature , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...